Circular buffer in VB.NET - vb.net

How can I create a circular buffer on the heap in VB.NET ?
This would be used for audio playback via P/Invoke to winmm.dll waveoutopen and waveoutwrite to support development of a software synth.
I currently use the marshall class to build a regular array of bytes in the heap.

OK, I'll byte...
Do you really mean CIRCULAR ( as in fixed size) or could you use a linked-list?
And
Why worry about "heap?" This is VB not "c/c++" on an embedded hardware system. Is the use of the term "heap" due to data scope, life cycle, or availability (to other apps? as in ALLOC/MALLOC)

Related

How do you use MTLSharedTextureHandle or MTLSharedEventHandle with the C XPC interface on macOS?

TL;DR: How do you encode and decode an MTLSharedTextureHandle and MTLSharedEventHandler such that it can be transported across an XPC connection inside an xpc_dictionary?
A macOS application I'm working on makes extensive use of XPC services and was implemented using the C-based API. (i.e.: xpc_main, xpc_connection, xpc_dictionary...) This made sense at the time because certain objects, like IOSurfaces, did not support NSCoding/NSSecureCoding and had to be passed using IOSurfaceCreateXPCObject.
In macOS 10.14, Apple introduced new classes for sharing Metal textures and events between processes: MTLSharedTextureHandle and MTLSharedEventHandle. These classes support NSSecureCoding but they don't appear to have a counter-part in the C-XPC interface for encoding/decoding them.
I thought I could use something like [NSKeyedArchiver archivedDataWithRootObject:requiringSecureCoding:error] to just convert them to NSData objects, which can then be stored in an xpc_dictionary, but when I try and do that, I get the following exception:
Caught exception during archival:
This object may only be encoded by an NSXPCCoder.
(NSXPCCoder is a private class.)
This happens for both MTLSharedTextureHandle and MTLSharedEventHandle. I could switch over to using the new NSXPCConnection API but I've already got an extensive amount of code built on the C-interface, so I'd rather not have to make the switch.
Is there any way to archive either of those two classes into a payload that can be stored in an xpc_dictionary for transfer between the service and the client?
MTLSharedTextureHandle only works with NSXPCConnection. If you're creating the texture from an IOSurface you can share the surface instead which is effectively the same thing. Make sure you are using the same GPU (same id<MTLDevice>) in both processes.
There is no workaround for MTLSharedEventHandle using public API.
I recommend switching to NSXPCConnection if you can. Unfortunately there isn't a good story for partially changing over using public API, you'll have to do it all at once or split your XPC service into two separate services.

Programmatic introspection/reflection - easier in VMs?

What makes programmatic introspection/reflection easier in virtual machines rather than native code?
I read somewhere that VMs by nature allow for better introspection/reflection capabilities but I cannot find more information about it online. Would like to know why.
I believe you mean higher-level languages vs lower-level languages instead of virtual machines.
Higher level languages like Java and C# have implemented reflection and introspection, so there are functions available to the developer to use this information.
Languages like C do not have any pre-built reflection capabilities.
Reflection is very expensive (time-consuming) for any language to run, and should not be used in code that needs to be extremely fast.
Programmatic introspection essentially means to examine & inspect the current call stack, or the current continuation. (Read Appel's book: Compiling with Continuations).
Few programming languages provide this ability. Scheme's call/cc reifies the current continuation, but give no standard ways to inspect it.
The current call stack might be inspectable (e.g. see GCC __builtin_return_address as an ad hoc example).
Most compilers (but not all) do not have an easy way to give information about the layout of the current call frame (however, the debugger DWARF format contains it).
And optimizing compilers (e.g. for C) usually don't give access to the offset of some local variable in the call frame (even if the compiler computes this offset). BTW, the same stack slot might be reused for different variables; read about register spilling.
See also J.Pitrat's CAIA system - the generated C code is able to organize the stack to be able to inspect it;
In a bytecode VM like JVM or NekoVM or Parrot, introspection is easier because each local variable has a well defined slot in the call frame. This is not the case for most compiled languages (e.g. C or C++) because the compiler is able to reuse (for optimization purposes) some slots, or even put a variable only in some machine register, without even allocating any call stack slot to spill it.

STM32 programming tips and questions

I could not find any good document on internet about STM32 programming. STM's own documents do not explain anything more than register functions. I will greatly appreciate if anyone can explain my following questions?
I noticed that in all example programs that STM provides, local variables for main() are always defined outside of the main() function (with occasional use of static keyword). Is there any reason for that? Should I follow a similar practice? Should I avoid using local variables inside the main?
I have a gloabal variable which is updated within the clock interrupt handle. I am using the same variable inside another function as a loop condition. Don't I need to access this variable using some form of atomic read operation? How can I know that a clock interrupt does not change its value in the middle of the function execution? Should I need to cancel clock interrupt everytime I need to use this variable inside a function? (However, this seems extremely ineffective to me as I use it as loop condition. I believe there should be better ways of doing it).
Keil automatically inserts a startup code which is written in assembly (i.e. startup_stm32f4xx.s). This startup code has the following import statements:
IMPORT SystemInit
IMPORT __main
.In "C", it makes sense. However, in C++ both main and system_init have different names (e.g. _int_main__void). How can this startup code can still work in C++ even without using "extern "C" " (I tried and it worked). How can the c++ linker (armcc --cpp) can associate these statements with the correct functions?
you can use local or global variables, using local in embedded systems has a risk of your stack colliding with your data. with globals you dont have that problem. but this is true no matter where you are, embedded microcontroller, desktop, etc.
I would make a copy of the global in the foreground task that uses it.
unsigned int myglobal;
void fun ( void )
{
unsigned int myg;
myg=myglobal;
and then only use myg for the rest of the function. Basically you are taking a snapshot and using the snapshot. You would want to do the same thing if you are reading a register, if you want to do multiple things based on a sample of something take one sample of it and make decisions on that one sample, otherwise the item can change between samples. If you are using one global to communicate back and forth to the interrupt handler, well I would use two variables one foreground to interrupt, the other interrupt to foreground. yes, there are times where you need to carefully manage a shared resource like that, normally it has to do with times where you need to do more than one thing, for example if you had several items that all need to change as a group before the handler can see them change then you need to disable the interrupt handler until all the items have changed. here again there is nothing special about embedded microcontrollers this is all basic stuff you would see on a desktop system with a full blown operating system.
Keil knows what they are doing if they support C++ then from a system level they have this worked out. I dont use Keil I use gcc and llvm for microcontrollers like this one.
Edit:
Here is an example of what I am talking about
https://github.com/dwelch67/stm32vld/tree/master/stm32f4d/blinker05
stm32 using timer based interrupts, the interrupt handler modifies a variable shared with the foreground task. The foreground task takes a single snapshot of the shared variable (per loop) and if need be uses the snapshot more than once in the loop rather than the shared variable which can change. This is C not C++ I understand that, and I am using gcc and llvm not Keil. (note llvm has known problems optimizing tight while loops, very old bug, dont know why they have no interest in fixing it, llvm works for this example).
Question 1: Local variables
The sample code provided by ST is not particularly efficient or elegant. It gets the job done, but sometimes there are no good reasons for the things they do.
In general, you use always want your variables to have the smallest scope possible. If you only use a variable in one function, define it inside that function. Add the "static" keyword to local variables if and only if you need them to retain their value after the function is done.
In some embedded environments, like the PIC18 architecture with the C18 compiler, local variables are much more expensive (more program space, slower execution time) than global. On the Cortex M3, that is not true, so you should feel free to use local variables. Check the assembly listing and see for yourself.
Question 2: Sharing variables between interrupts and the main loop
People have written entire chapters explaining the answers to this group of questions. Whenever you share a variable between the main loop and an interrupt, you should definitely use the volatile keywords on it. Variables of 32 or fewer bits can be accessed atomically (unless they are misaligned).
If you need to access a larger variable, or two variables at the same time from the main loop, then you will have to disable the clock interrupt while you are accessing the variables. If your interrupt does not require precise timing, this will not be a problem. When you re-enable the interrupt, it will automatically fire if it needs to.
Question 3: main function in C++
I'm not sure. You can use arm-none-eabi-nm (or whatever nm is called in your toolchain) on your object file to see what symbol name the C++ compiler assigns to main(). I would bet that C++ compilers refrain from mangling the main function for this exact reason, but I'm not sure.
STM's sample code is not an exemplar of good coding practice, it is merely intended to exemplify use of their standard peripheral library (assuming those are the examples you are talking about). In some cases it may be that variables are declared external to main() because they are accessed from an interrupt context (shared memory). There is also perhaps a possibility that it was done that way merely to allow the variables to be watched in the debugger from any context; but that is not a reason to copy the technique. My opinion of STM's example code is that it is generally pretty poor even as example code, let alone from a software engineering point of view.
In this case your clock interrupt variable is atomic so long as it is 32bit or less so long as you are not using read-modify-write semantics with multiple writers. You can safely have one writer, and multiple readers regardless. This is true for this particular platform, but not necessarily universally; the answer may be different for 8 or 16 bit systems, or for multi-core systems for example. The variable should be declared volatile in any case.
I am using C++ on STM32 with Keil, and there is no problem. I am not sure why you think that the C++ entry points are different, they are not here (Keil ARM-MDK v4.22a). The start-up code calls SystemInit() which initialises the PLL and memory timing for example, then calls __main() which performs global static initialisation then calls C++ constructors for global static objects before calling main(). If in doubt, step through the code in the debugger. It is important to note that __main() is not the main() function you write for your application, it is a wrapper with different behaviour for C and C++, but which ultimately calls your main() function.

Is it OK to use boost::shared ptr in DLL interface?

Is it valid to develop a DLL in C++ that returns boost shared pointers and uses them as parameters?
So, is it ok to export functions like this?
1.) boost::shared_ptr<Connection> startConnection();
2.) void sendToConnection(boost::shared_ptr<Connection> conn, byte* data, int len);
In special: Does the reference count work across DLL boundaries or would the requirement be that exe and dll use the same runtime?
The intention is to overcome the problems with object ownership. So the object gets deleted when both dll and exe don't reference it any more.
According to Scott Meyers in Effective C++ (3rd Edition), shared_ptrs are safe across dll boundaries. The shared_ptr object keeps a pointer to the destructor from the dll that created it.
In his book in Item 18 he states, "An especially nice feature of
tr1::shared_ptr is that it automatically uses its per-pointer deleter
to eliminate another potential client error, the "cross-DLL problem."
This problem crops up when an object is created using new in one
dynamically linked library (DLL) but is deleted in a different DLL. On
many platforms, such cross-DLL new/delete pairs lead to runtime
errors. tr1::shared_ptr avoid the problem, because its default deleter
uses delete from the same DLL where the tr1::shared_ptr is created."
Tim Lesher has an interesting gotcha to watch for, though, that he mentions here. You need to make sure that the DLL that created the shared_ptr isn't unloaded before the shared_ptr finally goes out of scope. I would say that in most cases this isn't something you have to watch for, but if you're creating dlls that will be loosely coupled then I would recommend against using a shared_ptr.
Another potential downside is making sure both sides are created with compatible versions of the boost library. Boost's shared_ptr has been stable for a long while. At least since 1.34 it's been tr1 compatible.
In my opinion, if it's not in the standard and it's not an object/mechanism provided by your library, then it shouldn't be part of the interface to the library. You can create your own object to do the reference counting, and perhaps use boost underneath, but it shouldn't be explicitly exposed in the interface.
DLLs do not normally own resources - the resources are owned by the processes that use the DLL. You are probably better off returning a plain pointer, which you then store in a shared pointer on the calling side. But without more info it's hard to be 100% certain about this.
Something to lookout for if you expose raw pointers from a dll interface. It forces you to use the shared dll CRT, memory allocated in one CRT cannot be deallocated in a different CRT. If you use the shared dll CRT in all your modules ( dll's & exe's ) then you are fine, they all share the same heap, if you dont you will be crossing CRT's and the world will meltdown.
Aside from that issue, I agree with the accepted answer. The creation factory probably shouldn't define ownership & lifecycle management for the client code.
No it is not.
The layout of boost::shared_ptr<T> might not be the same on both sides of the DLL boundary. (Layout is influenced by compiler version, packing pragmas, and other compiler options, as well as the actual version of the Boost source code.)
Only "standard layout" (a new concept in C++11, related to the old "POD = plain old data" concept) types can safely be passed between separately-built modules.

JIT code generation techniques

How does a virtual machine generate native machine code on the fly and execute it?
Assuming you can figure out what are the native machine op-codes you want to emit, how do you go about actually running it?
Is it something as hacky as mapping the mnemonic instructions to binary codes, stuffing it into an char* pointer and casting it as a function and executing?
Or would you generate a temporary shared library (.dll or .so or whatever) and load it into memory using standard functions like LoadLibrary ?
You can just make the program counter point to the code you want to execute. Remember that data can be data or code. On x86 the program counter is the EIP register. The IP part of EIP stands for instruction pointer. The JMP instruction is called to jump to an address. After the jump EIP will contain this address.
Is it something as hacky as mapping the mnemonic instructions to binary codes, stuffing it into an char* pointer and casting it as a function and executing?
Yes. This is one way of doing it. The resulting code would be cast to a pointer to function in C.
Is it something as hacky as mapping the mnemonic instructions to binary codes, stuffing it into an char* pointer and casting it as a function and executing?
Yes, if you were doing it in C or C++ (or something similar), that's exactly what you'd do.
It appears hacky, but that's actually an artifact of the language design. Remember, the actual algorithm you want to use is very simple: determine what instructions you want to use, load them into a buffer in memory, and jump to the beginning of that buffer.
If you really try to do this, though, make sure you get the calling convention right when you return to your C program. I think if I wanted to generate code I'd look for a library to take care of that aspect for me. Nanojit's been in the news recently; you could look at that.
Yup. You just build up a char* and execute it. However, you need to note a couple details. The char* must be in an executable section of memory and must have proper alignment.
In addition to nanojit you can also check out LLVM which is another library that's capable of compiling various program representations down to a function pointer. It's interface is clean and the generated code tends to be efficient.
As far as i know it compiles everything in memory because it has to run some heuristics to to optimize the code (i.e.: inlining over time) but you can have a look at the Shared Source Common Language Infrastructure 2.0 rotor release. The whole codebase is identical to .NET except for the Jitter and the GC.
As well as Rotor 2.0 - you could also take a look at the HotSpot virtual machine in the OpenJDK.
About generating a DLL: the additional required I/O for that, plus linking, plus the complexity of generating the DLL format, would make that much more complicate, and above all they'd kill performance; additionally, in the end you still call a function pointer to the loaded code, so...
Also, JIT compilation can happen one method at a time, and if you want to do that you'd generate lots of small DLLs.
About the "executable section" requirement, calling mprotect() on POSIX systems can fix the permissions (there's a similar API on Win32). You need to do that for a big memory segment instead that once per method since it'd be too slow otherwise.
On plain x86 you wouldn't notice the problem, on x86 with PAE or 64bit AMD64/Intel 64 bit machines you'd get a segfault.
Is it something as hacky as mapping
the mnemonic instructions to binary
codes, stuffing it into an char*
pointer and casting it as a function
and executing?
Yes, that works.
To do this in windows you must set PAGE_EXECUTE_READWRITE to the allocated block:
void (*MyFunc)() = (void (*)()) VirtualAlloc(NULL, sizeofblock, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
//Now fill up the block with executable code and issue-
MyFunc();