SQL - many-to-many table primary key - sql

This question comes up after reading a comment in this question:
Database Design
When you create a many-to-many table, should you create a composite primary key on the two foreign key columns, or create a auto-increment surrogate "ID" primary key, and just put indexes on your two FK columns (and maybe a unique constraint)? What are the implications on performance for inserting new records/re-indexing in each case?
Basically, this:
PartDevice
----------
PartID (PK/FK)
DeviceID (PK/FK)
vs. this:
PartDevice
----------
ID (PK/auto-increment)
PartID (FK)
DeviceID (FK)
The commenter says:
making the two IDs the PK means the
table is physically sorted on the disk
in that order. So if we insert
(Part1/Device1), (Part1/Device2),
(Part2/Device3), then (Part 1/Device3)
the database will have to break the
table apart and insert the last one
between entries 2 and 3. For many
records, this becomes very problematic
as it involves shuffling hundreds,
thousands, or millions of records
every time one is added. By contrast,
an autoincrementing PK allows the new
records to be tacked on to the end.
The reason I'm asking is because I've always been inclined to do the composite primary key with no surrogate auto-increment column, but I'm not sure if the surrogate key is actually more performant.

With a simple two-column many-to-many mapping, I see no real advantage to having a surrogate key. Having a primary key on (col1,col2) is guaranteed unique (assuming your col1 and col2 values in the referenced tables are unique) and a separate index on (col2,col1) will catch those cases where the opposite order would execute faster. The surrogate is a waste of space.
You won't need indexes on the individual columns since the table should only ever be used to join the two referenced tables together.
That comment you refer to in the question is not worth the electrons it uses, in my opinion. It sounds like the author thinks the table is stored in an array rather than an extremely high performance balanced multi-way tree structure.
For a start, it's never necessary to store or get at the table sorted, just the index. And the index won't be stored sequentially, it'll be stored in an efficient manner to be able to be retrieved quickly.
In addition, the vast majority of database tables are read far more often than written. That makes anything you do on the select side far more relevant than anything on the insert side.

No surrogate key is needed for link tables.
One PK on (col1, col2) and another unique index on (col2, col1) is all you need
Unless you use an ORM that can't cope and dictates your DB design for you...
Edit: I answered the same here: SQL: Do you need an auto-incremental primary key for Many-Many tables?

An incremental primary key could be needed if the table is referenced. There might be details in the many-to-many table which needed to be pulled up from another table using the incremental primary key.
for example
PartDevice
----------
ID (PK/auto-increment)
PartID (FK)
DeviceID (FK)
Other Details
It's easy to pull the 'Other Details' using PartDevice.ID as the FK. Thus the use of incremental primary key is needed.

The shortest and most direct way I can answer your question is to say that there will be a performance impact if the two tables you are linking don't have sequential primary keys. As you stated/quoted, the index for the link table will either become fragmented, or the DBMS will work harder to insert records if the link table does not have its own sequential primary key. This is the reason most people put a sequentially incrementing primary key on link tables.

So it seems like if the ONLY job is to link the two tables, the best PK would be the dual-column PK.
But if it serves other purposes then add another NDX as a PK with a foreign keys and a second unique index.
Index or PK is the best way to make sure there are no duplicates. PK lets tools like Microsoft Management Studio do some of the work (creating views) for you

Related

Many-to-many link table design : two foreign keys only or an additional primary key?

this is undoubtedly a newbie question, but I haven't been able
to find a satisfactory answer.
When creating a link table for many-to-many relationships, is it better to
create a unique id or only use two foreign keys of the respective tables (compound key?).
Looking at different diagrams of the Northwind database for example, I've come across
both 'versions'.
That is: a OrderDetails table with fkProductID and fkOrderID and also versions
with an added OrderDetailsID.
What's the difference? (does it also depend on the DB engine?).
What are the SQL (or Linq) advantages/disadvantages?
Thanks in advance for an explanation.
Tom
ORMs have been mandating the use of non-composite primary keys to simplify queries...
But it Makes Queries Easier...
At first glance, it makes deleting or updating a specific order/etc easier - until you realize that you need to know the applicable id value first. If you have to search for that id value based on an orders specifics then you'd have been better off using the criteria directly in the first place.
But Composite keys are Complex...
In this example, a primary key constraint will ensure that the two columns--fkProductID and fkOrderID--will be unique and indexed (most DBs these days automatically index primary keys if the clustered index doesn't already exist) using the best index possible for the table.
The lone primary key approach means the OrderDetailsID is indexed with the best index for the table (SQL Server & MySQL call them clustered indexes, to Oracle they're all just indexes), and requires an additional composite unique constraint/index. Some databases might require additional indexing beyond the unique constraint... So this makes the data model more involved/complex, and for no benefit:
Some databases, like MySQL, put a limit on the amount of space you can use for indexes.
the primary key is getting the most ideal index yet the value has no relevance to the data in the table, so making use of the index related to the primary key will be seldom if ever.
Conclusion
I don't see the benefit in a single column primary key over a composite primary key. More work for additional overhead with no net benefit...
I'm used to use PrimaryKey column. It's because the primary key uniquely identify the record.
If you have a cascade-update settings on table relations, the values of foreign keys can be changed between "SELECT" and "UPDATE/DELETE" commands sent from application.

SQL: what exactly do Primary Keys and Indexes do?

I've recently started developing my first serious application which uses a SQL database, and I'm using phpMyAdmin to set up the tables. There are a couple optional "features" I can give various columns, and I'm not entirely sure what they do:
Primary Key
Index
I know what a PK is for and how to use it, but I guess my question with regards to that is why does one need one - how is it different from merely setting a column to "Unique", other than the fact that you can only have one PK? Is it just to let the programmer know that this value uniquely identifies the record? Or does it have some special properties too?
I have no idea what "Index" does - in fact, the only times I've ever seen it in use are (1) that my primary keys seem to be indexed, and (2) I heard that indexing is somehow related to performance; that you want indexed columns, but not too many. How does one decide which columns to index, and what exactly does it do?
edit: should one index colums one is likely to want to ORDER BY?
Thanks a lot,
Mala
Primary key is usually used to create a numerical 'id' for your records, and this id column is automatically incremented.
For example, if you have a books table with an id field, where the id is the primary key and is also set to auto_increment (Under 'Extra in phpmyadmin), then when you first add a book to the table, the id for that will become 1'. The next book's id would automatically be '2', and so on. Normally, every table should have at least one primary key to help identifying and finding records easily.
Indexes are used when you need to retrieve certain information from a table regularly. For example, if you have a users table, and you will need to access the email column a lot, then you can add an index on email, and this will cause queries accessing the email to be faster.
However there are also downsides for adding unnecessary indexes, so add this only on the columns that really do need to be accessed more than the others. For example, UPDATE, DELETE and INSERT queries will be a little slower the more indexes you have, as MySQL needs to store extra information for each indexed column. More info can be found at this page.
Edit: Yes, columns that need to be used in ORDER BY a lot should have indexes, as well as those used in WHERE.
The primary key is basically a unique, indexed column that acts as the "official" ID of rows in that table. Most importantly, it is generally used for foreign key relationships, i.e. if another table refers to a row in the first, it will contain a copy of that row's primary key.
Note that it's possible to have a composite primary key, i.e. one that consists of more than one column.
Indexes improve lookup times. They're usually tree-based, so that looking up a certain row via an index takes O(log(n)) time rather than scanning through the full table.
Generally, any column in a large table that is frequently used in WHERE, ORDER BY or (especially) JOIN clauses should have an index. Since the index needs to be updated for evey INSERT, UPDATE or DELETE, it slows down those operations. If you have few writes and lots of reads, then index to your hear's content. If you have both lots of writes and lots of queries that would require indexes on many columns, then you have a big problem.
The difference between a primary key and a unique key is best explained through an example.
We have a table of users:
USER_ID number
NAME varchar(30)
EMAIL varchar(50)
In that table the USER_ID is the primary key. The NAME is not unique - there are a lot of John Smiths and Muhammed Khans in the world. The EMAIL is necessarily unique, otherwise the worldwide email system wouldn't work. So we put a unique constraint on EMAIL.
Why then do we need a separate primary key? Three reasons:
the numeric key is more efficient
when used in foreign key
relationships as it takes less space
the email can change (for example
swapping provider) but the user is
still the same; rippling a change of
a primary key value throughout a schema
is always a nightmare
it is always a bad idea to use
sensitive or private information as
a foreign key
In the relational model, any column or set of columns that is guaranteed to be both present and unique in the table can be called a candidate key to the table. "Present" means "NOT NULL". It's common practice in database design to designate one of the candidate keys as the primary key, and to use references to the primary key to refer to the entire row, or to the subject matter item that the row describes.
In SQL, a PRIMARY KEY constraint amounts to a NOT NULL constraint for each primary key column, and a UNIQUE constraint for all the primary key columns taken together. In practice many primary keys turn out to be single columns.
For most DBMS products, a PRIMARY KEY constraint will also result in an index being built on the primary key columns automatically. This speeds up the systems checking activity when new entries are made for the primary key, to make sure the new value doesn't duplicate an existing value. It also speeds up lookups based on the primary key value and joins between the primary key and a foreign key that references it. How much speed up occurs depends on how the query optimizer works.
Originally, relational database designers looked for natural keys in the data as given. In recent years, the tendency has been to always create a column called ID, an integer as the first column and the primary key of every table. The autogenerate feature of the DBMS is used to ensure that this key will be unique. This tendency is documented in the "Oslo design standards". It isn't necessarily relational design, but it serves some immediate needs of the people who follow it. I do not recommend this practice, but I recognize that it is the prevalent practice.
An index is a data structure that allows for rapid access to a few rows in a table, based on a description of the columns of the table that are indexed. The index consists of copies of certain table columns, called index keys, interspersed with pointers to the table rows. The pointers are generally hidden from the DBMS users. Indexes work in tandem with the query optimizer. The user specifies in SQL what data is being sought, and the optimizer comes up with index strategies and other strategies for translating what is being sought into a stategy for finding it. There is some kind of organizing principle, such as sorting or hashing, that enables an index to be used for fast lookups, and certain other uses. This is all internal to the DBMS, once the database builder has created the index or declared the primary key.
Indexes can be built that have nothing to do with the primary key. A primary key can exist without an index, although this is generally a very bad idea.

Should I use Primary key here?

As an example,
I have a 3 tables:
School: ID int, Name varchar
Student: ID int, Name varchar
StudentInSchool: StudentID int, SchoolID int
Now the question is whether I should put a column ID int with a primary key on it in StudentInSchool table? If yes, why?
Will it be helpful in indexing?
Any help appreciated.
Personally, I create composite PK (StudentID and SchoolID) on such junction tables. This also ensures uniqueness.
If, however, uniqueness is not required, you'll have to add an ID column to uniquely identify each row.
Generally speaking, addition of a separate ID column will not help much: very few queries (if any) will actually use this column. As for performance, you can create separate index for each column and you'll be just fine.
Create a primary key on StudentID, SchoolID and a secondary index on SchoolID, or vice versa, depending on what search condition is used more often.
If your table is index organized (ORGANIZATION INDEX in Oracle, CLUSTERED in SQL Server, InnoDB in MySQL), then the secondary index will have a PRIMARY KEY as a leftmost part and, hence, all information can be fetched out of the index.
In this example, unless the StudentInSchool table is going to have other attributes, e.g. timestamps for when the student was in that school to cope with moves, I wouldn't use it and I'd put the schoolID field in the Student table and define it as a foreign key there.
But if this is the design, then yes, you're not going to be losing anything by putting a primary key on the StudentInSchool table.
The answer is, it depends. In most cases the answer is 'No': a compound primary key of (StudentID, SchoolID) will suffice.
But if that intersection table starts to acquire other related data (say, joining date, leaving date) and/or it becomes a parent of related tables (e.g. attendance record) then you may want or need to treat it as a regular table. In which case (StudentID, SchoolID) becomes a business key (i.e. still unique) and you add a synthetic (or surrogate) primary key of Id or whatever.
In terms of pure data integrity: no. It's perfectly sufficient to define the primary key as (StudentID, SchoolID).
However, you don't say which RDBMS you are using. It may be that, for some of them, a single ID column would result in more efficient query plans.
In the case of SQL Server, a composite primary key of two integers is very efficient, and no further indexes should be required on the two columns.
Ok I think there is something missing in the assignment, so I'll try with my poor knowledge of real world :o)
What are students? They go to school(s), they may study at more than one school (especially universities), they may even repat same school later, etc.
Is the junction table as-is (with PK over both ids) enough to model these relationships?
short answer: no
long answer: still no, but for subset of simple cases it is sufficient (is yours one of them?).
If you want to extend db later for all these cases, surrogate PK (your ID) will be required. I would put ID there if I have just a doubt it might be required (as there's not much to lose).
As stated in the first sentence - correct answer is: "We don't know" as requirements and context of application are missing.
You could combine StudentID and SchoolID to one primary key.
There are some general rules which
describe when to use indexes. When
dealing with relatively small tables,
indexes do not improve performance. In
general indexes improve performance
when they are created on fields used
in table joins. Use indexes when most
of your database queries retrieve
relatively small datasets, because if
your queries retrieve most of the data
most of the time, the indexes will
actually slow the data retrieval. Use
indexes for columns that have many
different values (there are not many
repeated values within the column).
Although indexes improve search
performance, they slow the updates,
and this might be something worth
considering.
Source: SQL Indexes

in general, should every table in a database have an identity field to use as a PK?

I'm running into an issue with a join: getting back too many records. I added a table to the set of joins and the number of rows expanded. Usually when this happens I add a select of all the ID fields that are involved in the join. That way it's pretty obvious where the expansion is happening and I can change the ON of the join to fix it. Except in this case, the table that I added doesn't have an ID field. This is a problem. But perhaps I'm wrong.
Should every table in a database have an IDENTITY field that's used as the PK? Are there any drawbacks to having an ID field in every table? What if you're reasonably sure this table will never be used in a PK/FK relationship?
When having an identity column is not a good idea?
Surrogate vs. natural/business keys
Wikipedia Surrogate Key article
There are two concepts that are close but should not be confused: IDENTITY and PRIMARY KEY
Every table (except for the rare conditions) should have a PRIMARY KEY, that is a value or a set of values that uniquely identify a row.
See here for discussion why.
IDENTITY is a property of a column in SQL Server which means that the column will be filled automatically with incrementing values.
Due to the nature of this property, the values of this column are inherently UNIQUE.
However, no UNIQUE constraint or UNIQUE index is automatically created on IDENTITY column, and after issuing SET IDENTITY_INSERT ON it's possible to insert duplicate values into an IDENTITY column, unless it had been explicity UNIQUE constrained.
The IDENTITY column should not necessarily be a PRIMARY KEY, but most often it's used to fill the surrogate PRIMARY KEYs
It may or may not be useful in any particular case.
Therefore, the answer to your question:
The question: should every table in a database have an IDENTITY field that's used as the PK?
is this:
No. There are cases when a database table should NOT have an IDENTITY field as a PRIMARY KEY.
Three cases come into my mind when it's not the best idea to have an IDENTITY as a PRIMARY KEY:
If your PRIMARY KEY is composite (like in many-to-many link tables)
If your PRIMARY KEY is natural (like, a state code)
If your PRIMARY KEY should be unique across databases (in this case you use GUID / UUID / NEWID)
All these cases imply the following condition:
You shouldn't have IDENTITY when you care for the values of your PRIMARY KEY and explicitly insert them into your table.
Update:
Many-to-many link tables should have the pair of id's to the table they link as the composite key.
It's a natural composite key which you already have to use (and make UNIQUE), so there is no point to generate a surrogate key for this.
I don't see why would you want to reference a many-to-many link table from any other table except the tables they link, but let's assume you have such a need.
In this case, you just reference the link table by the composite key.
This query:
CREATE TABLE a (id, data)
CREATE TABLE b (id, data)
CREATE TABLE ab (a_id, b_id, PRIMARY KEY (a_id, b_id))
CREATE TABLE business_rule (id, a_id, b_id, FOREIGN KEY (a_id, b_id) REFERENCES ab)
SELECT *
FROM business_rule br
JOIN a
ON a.id = br.a_id
is much more efficient than this one:
CREATE TABLE a (id, data)
CREATE TABLE b (id, data)
CREATE TABLE ab (id, a_id, b_id, PRIMARY KEY (id), UNIQUE KEY (a_id, b_id))
CREATE TABLE business_rule (id, ab_id, FOREIGN KEY (ab_id) REFERENCES ab)
SELECT *
FROM business_rule br
JOIN a_to_b ab
ON br.ab_id = ab.id
JOIN a
ON a.id = ab.a_id
, for obvious reasons.
Almost always yes. I generally default to including an identity field unless there's a compelling reason not to. I rarely encounter such reasons, and the cost of the identity field is minimal, so generally I include.
Only thing I can think of off the top of my head where I didn't was a highly specialized database that was being used more as a datastore than a relational database where the DBMS was being used for nearly every feature except significant relational modelling. (It was a high volume, high turnover data buffer thing.)
I'm a firm believer that natural keys are often far worse than artificial keys because you often have no control over whether they will change which can cause horrendous data integrity or performance problems.
However, there are some (very few) natural keys that make sense without being an identity field (two-letter state abbreviation comes to mind, it is extremely rare for these official type abbreviations to change.)
Any table which is a join table to model a many to many relationship probably also does not need an additional identity field. Making the two key fields together the primary key will work just fine.
Other than that I would, in general, add an identity field to most other tables unless given a compelling reason in that particular case not to. It is a bad practice to fail to create a primary key on a table or if you are using surrogate keys to fail to place a unique index on the other fields needed to guarantee uniqueness where possible (unless you really enjoy resolving duplicates).
Every table should have some set of field(s) that uniquely identify it. Whether or not there is a numeric identifier field separate from the data fields will depend on the domain you are attempting to model. Not all data easily falls into the 'single numeric id' paradigm, and as such it would be inappropriate to force it. Given that, a lot of data does easily fit in this paradigm and as such would call for such an identifier. There is no one answer to always do X in any programming environment, and this is another example.
If you have modelled, designed, normalised etc, then you will have no identity columns.
You will have identified natural and candidate keys for your tables.
You may decide on a surrogate key because of the physical architecture (eg narrow, numeric, strictly monotonically increasing), say, because using a nvarchar(100) column is not a good idea (still need unique constraint).
Or because of ideology: they appeal to OO developers I've found.
Ok, assume ID columns. As your db gets more complex, say several layers, how can you jon parent and grand-.child tables directly. You can't: you always need intermediate tables and well indexed PK-FL columns. With a composite key, it's all there for you...
Don't get me wrong: I use them. But I know why I use them...
Edit:
I'd be interested to collate "always ID"+"no stored procs" matches on one hand, with "use stored procs"+"IDs when they benefit" on the other...
No. Whenever you have a table with an artificial identity column, you also need to identify the natural primary key for the table and ensure that there is a unique constraint on that set of columns too so that you don't get two rows that are identical apart from the meaningless identity column by accident.
Adding an identity column is not cost free. There is an overhead in adding an unnecessary identity column to a table - typically 4 bytes per row of storage for the identity value, plus a whole extra index (which will probably weigh in at 8-12 bytes per row plus overhead). It also takes slightly to work out the most cost-effective query plan because there is an extra index per table. Granted, if the table is small and the machine is big, this overhead is not critical - but for the biggest systems, it matters.
Yes, for the vast majority of cases.
Edge cases or exceptions might be things like:
two-way join tables to model m:n relationships
temporary tables used for bulk-inserting huge amounts of data
But other than that, I think there is no good reason against having a primary key to uniquely identify each row in a table, and in my opinion, using an IDENTITY field is one of the best choices (I prefer surrogate keys over natural keys - they're more reliable, stable, never changing etc.).
Marc
I can't think of any drawback about having an ID field in each table. Providing your the type of your ID field provides enough space for your table to grow.
However, you don't necessarily need a single field to ensure the identity of your rows.
So no, a single ID field is not mandatory.
Primary and Foreign Keys can consist not only of one field, but of multiple fields. This is typical for tables implementing a N-N relationship.
You can perfectly have PRIMARY KEY (fa, fb) on your table:
CREATE TABLE t(fa INT , fb INT);
ALTER TABLE t ADD PRIMARY KEY(fa , fb);
Recognize the distinction between an Identity field and a key... Every table should have a key, to eliminate the data corruption of inadvertently entering multiple rows that represent the same 'entity'. If the only key a table has is a meaningless surrogate key, then this function is effectively missing.
otoh, No table 'needs' an identity, and certainly not every table benefits from one... Examples are: A table with a short and functional key, a table which does not have any other table referencing it through a foreign Key, or a table which is in a one to zero-or-one relationship with another table... none of these need an Identity
I'd say, if you can find a simple, natural key in your table (i.e. one column), use that as a key instead of an identity column.
I generally give every table some kind of unique identifier, whether it is natural or generated, because then I am guaranteed that every row is uniquely identified somehow.
Personally, I avoid IDENTITY (incrementing identity columns, like 1, 2, 3, 4) columns like the plague. They cause a lot of hassle, especially if you delete rows from that table. I use generated uniqueidentifiers instead if there is no natural key in the table.
Anyway, no idea if this is the accepted practice, just seems right to me. YMMV.

SQL: Do you need an auto-incremental primary key for Many-Many tables?

Say you have a Many-Many table between Artists and Fans. When it comes to designing the table, do you design the table like such:
ArtistFans
ArtistFanID (PK)
ArtistID (FK)
UserID (FK)
(ArtistID and UserID will then be contrained with a Unique Constraint
to prevent duplicate data)
Or do you build use a compound PK for the two relevant fields:
ArtistFans
ArtistID (PK)
UserID (PK)
(The need for the separate unique constraint is removed because of the
compound PK)
Are there are any advantages (maybe indexing?) for using the former schema?
ArtistFans
ArtistID (PK)
UserID (PK)
The use of an auto incremental PK has no advantages here, even if the parent tables have them.
I'd also create a "reverse PK" index automatically on (UserID, ArtistID) too: you will need it because you'll query the table by both columns.
Autonumber/ID columns have their place. You'd choose them to improve certain things after the normalisation process based on the physical platform. But not for link tables: if your braindead ORM insists, then change ORMs...
Edit, Oct 2012
It's important to note that you'd still need unique (UserID, ArtistID) and (ArtistID, UserID) indexes. Adding an auto increments just uses more space (in memory, not just on disk) that shouldn't be used
Assuming that you're already a devotee of the surrogate key (you're in good company), there's a case to be made for going all the way.
A key point that is sometimes forgotten is that relationships themselves can have properties. Often it's not enough to state that two things are related; you might have to describe the nature of that relationship. In other words, there's nothing special about a relationship table that says it can only have two columns.
If there's nothing special about these tables, why not treat it like every other table and use a surrogate key? If you do end up having to add properties to the table, you'll thank your lucky presentation layers that you don't have to pass around a compound key just to modify those properties.
I wouldn't even call this a rule of thumb, more of a something-to-consider. In my experience, some slim majority of relationships end up carrying around additional data, essentially becoming entities in themselves, worthy of a surrogate key.
The rub is that adding these keys after the fact can be a pain. Whether the cost of the additional column and index is worth the value of preempting this headache, that really depends on the project.
As for me, once bitten, twice shy – I go for the surrogate key out of the gate.
Even if you create an identity column, it doesn't have to be the primary key.
ArtistFans
ArtistFanId
ArtistId (PK)
UserId (PK)
Identity columns can be useful to relate this relation to other relations. For example, if there was a creator table which specified the person who created the artist-user relation, it could have a foreign key on ArtistFanId, instead of the composite ArtistId+UserId primary key.
Also, identity columns are required (or greatly improve the operation of) certain ORM packages.
I cannot think of any reason to use the first form you list. The compound primary key is fine, and having a separate, artificial primary key (along with the unique contraint you need on the foreign keys) will just take more time to compute and space to store.
The standard way is to use the composite primary key. Adding in a separate autoincrement key is just creating a substitute that is already there using what you have. Proper database normalization patterns would look down on using the autoincrement.
Funny how all answers favor variant 2, so I have to dissent and argue for variant 1 ;)
To answer the question in the title: no, you don't need it. But...
Having an auto-incremental or identity column in every table simplifies your data model so that you know that each of your tables always has a single PK column.
As a consequence, every relation (foreign key) from one table to another always consists of a single column for each table.
Further, if you happen to write some application framework for forms, lists, reports, logging etc you only have to deal with tables with a single PK column, which simplifies the complexity of your framework.
Also, an additional id PK column does not cost you very much in terms of disk space (except for billion-record-plus tables).
Of course, I need to mention one downside: in a grandparent-parent-child relation, child will lose its grandparent information and require a JOIN to retrieve it.
In my opinion, in pure SQL id column is not necessary and should not be used. But for ORM frameworks such as Hibernate, managing many-to-many relations is not simple with compound keys etc., especially if join table have extra columns.
So if I am going to use a ORM framework on the db, I prefer putting an auto-increment id column to that table and a unique constraint to the referencing columns together. And of course, not-null constraint if it is required.
Then I treat the table just like any other table in my project.