Simpler Explanation of How to Make Call WCF Service without Adding Service Ref - wcf

In Understanding WCF Services in Silverlight 2, the author, David Betz, explains how to call a web service without adding a service reference in the client application. I have a couple of weeks experience with WCF, so the article was over my head. In particular, although the author gave a lot of code snippets, but does not say what goes where. In the article, he provides two different code snippets for the web.config file, but does not clarify what's going on.
Looking at the source code there are four projects and two web.config files.
So far, I have been using the standard Silverlight project configuration of one project for the web service and one for the Silverlight client.
Firstly, does the procedure described in the article work with the standard two project configuration? I would think it would.
Secondly, does anyone know of a simpler example? I am very interested in this, but would like to either see source code in the default two project setup which is generated when a new Silverlight project is made, or find a step by step description of how to do this (eg, add a class called xxx.cs and add this code..., open web.config and add these lines...)
Many thanks
Mike Thomas

First, a little philosophy...
If you are a consumer of a WCF service that you did not write, adding a service reference to your client is really the only mechanism you have to enable interaction with that WCF service. Otherwise, you have no way of knowing what the service contract looks like, much less its data and message contracts.
However, if you are in control of both the client and the WCF service itself, adding a service reference to the client is a nice convenience, but I've recently been convinced not to use it. For one, it becomes a nuisance after the first few times you change your contract to remember to update your service reference. And in my case, I have several different C# projects that are consuming the WCF service, so I have to remember to update each one of them. Second, creating a service reference duplicates the contract definitions that are already defined in your WCF service. It is important to understand the implications of this.
Let's say your WCF defines the following type.
[DataContract]
public class Person
{
[DataMember] public string FirstName {get; set;}
[DataMember] public string LastName {get; set;}
}
When you add a service reference to your client, the metadata associated with this class is retrieved through the metadata exchange (MEX) endpoint, and an exact replica of this class is created on the client side that your client "compiles" against. So your WCF service has a definition of the Person class, and so does your client, but they are two different, distinct class definitions.
Given this, it would make more sense to abstract the Person class into a separate assembly that is then shared between the WCF service and the client. The added benefit is that when you change the contract definitions within this shared assembly, you no longer have to update the service reference within the client because it is already referencing the shared assembly. Does that make sense?
Now to your question. Personally, I've only used WCF within C# projects, not Silverlight. However, I do not think things are radically different. Given that, I would suggest that you watch the Extreme WCF video at dnrTV. It gives a step-by-step guide for how to bypass the service reference feature.
Hope this helps.

Let me try - I'm not an expert at Silverlight development, so bear with me if I say something that doesn't apply to Silverlight :-)
As Matt Davis mentioned, the "usual" use case is this: you add a service reference to a given service URL. In doing so, Visual Studio (or the command-line tool svcutil.exe) will interrogate the service and grab its metadata - information that describes the service, all the available methods to call, what parameter they expect etc. From this, it will generate a class for you (usually called the "client" or "client proxy"), which you as a client (=service consumer) will use to call the service. You can have this client proxy class generated inside your "normal" Silverlight client project, or you could possibly create your own "service adapter" class library, esp. if you will be sharing that client proxy code amongst several Silverlight projects. How things are structured on the server side of things is totally irrelevant at this point.
As Matt D. also mentioned, if you do it this way, you're getting copies of the service, its methods, and its data, in your client - those are identical in structure to what the server has - but they're not the same type - you on the client side have one type, the server has another (the fields and properties are identical though).
This is important to remember since the whole basic idea of WCF is message-passing - all that connects the client (you) and the server (the other end) are the messages and their structure - what method to call and what values to pass into that method. There's no other link - there's no way a server can "connect" to the client code and check something or whatever. All that gets exchanged is serialized messages (in text or binary form).
If you do control both ends, you can simplify things a bit - you can physically share the service contract (the definition what the service looks like and what methods it has to call into) and the data contract (the description of what data is being passed back and forth) on both the server side as well as the client side. In this case, you won't be adding a service reference, you won't be duplicating the service and data definitions, so things are a bit easier (but it only works if you're in control of both ends).
In this case, best practice would be to package up all that describes the service (the service interface with its methods and the data contracts) into a separate assembly (class library) on the server, which you can then copy to the client side, and reference directly from there (like any old assembly you might have). So in this case, you would typically have at least three projects in your solution:
your actual Silverlight client project
the website or web app hosting your Silverlight control for testing
the service interface assembly, which contains the service and data contracts
So there you have it - I hope I covered all the basics of what's going on, and why you would want to do one or the other thing. If you need additional info, don't hesitate to comment on this posting and let us know!
Marc

Related

How to setup WCF

I went through many posts but, i did not able to clear my some of basic doubts related to WCF service as follow:
Why should we keep separate class library projects assembly for Service.Contracts and Service.Implementation ?
we can implement one interface multiple times even it in single assembly.
It suppose to create - WCF Application project and maintain interfaces into separate folder and SVC.cs file separately.
Add service reference is not good option as it adds all the schemas into client side.
svcutil.exe is also do same thing. Then, what is the best way to consume wcf service at client side ?
All is explained in this great article - WCF the Manual Way…the Right Way.
Essentially, Add Service Reference and svcutil just lead to client proxies that become out of date over time; and the fact that the solution has multiple types defined for what are essentially the same class.
Update: Since writing this answer I have learnt not to have answers in another castle so I update below:
Essentially, WCF the Manual Way…the Right Way describes that rather than using Add Service Reference, you instead divide your WCF system into separate dlls for:
Contracts
Service implementation
Roll-your-own client proxies
Both the service and client add normal code references (not service references) to the contracts dll.
In this way, the service and client are using the same types (and not code-generated ones in the client) and when the contract changes - both the service and client are forced to update less a compile error appears. No more out-of-date clients.

Communication between two WCF service libraries on the same Windows Service host

The project I'm currently working on includes a server that receives C# scripts (partial code) from clients, wraps it to create a complete class, compiles it then load it into a separate AppDomain for execution.
A task (currently running script) can send feedback to the user at any point of it's execution, as defined in the script by the user. And possibly the task might wait for a response from the user (currently assuming it's only right after having sent feedback). And the user might, at any moment, decide to kill a task.
The server is implemented as a Windows Service hosting a WCF Service Library.
As I don't want to overcomplicate the client to make it communicate directly with the dynamically created AppDomains, the (partial) solution that I considered after some research was hosting a second WCF service with named pipe binding to make the dynamic AppDomains use it as a relay between them and the client facing WCF service.
My issue is that now I can't think of a clean way to have the two WCF services interact.
My ideas are:
Having them maintain direct references to each other:
Seeing as Normally both of the services are singletons it shouldn't be hard to do.
But that would be a pain to maintain in the case one of them fails and needs to be restarted. (I'm still new to WCF so I have no idea how common that is, but it's still an issue to consider. I think.)
Introducing some sort of a "message queue" (or two, one for each direction) with properties that can be set and subscribed to. Thus when one service sets a property an event will be triggered in the second. But that feels somewhat hacky to me, even though I can't really think of any clear issues.
I could really use some expert input on what I'm trying to accomplish, be it opinions on my thoughts or new ideas. Even if that involves rethinking the architecture. This project is still in an early enough stage to afford some rework, as long as there is enough reason to do that of course.
Since I've put lots of efforts (read: 2 minutes on paint) to prepare a quick (read: useless) schema of the system, I'll link it here since I don't have the reputation to post images:
Link to schema
Edit:
As I now have the reputation thanks to an upvote:
Still after rereading my question, I feel that perhaps I have been looking at this issue from a too narrow perspective by thinking of the services as something more special than ordinary classes. The more I think about it the more I feel that the observer pattern is probably the best approach to take.
Just for the record, and to avoid leaving my (silly) question unanswered, I've realised that I was looking at this too narrowly by trying to find a solution specific to WCF services.
And finally I ended up using a variation of the observer pattern (based on the IObservable<T>Interface).
I came across the same issue. The way I handled a duplex communication between the two servers is as following:
For each process (AppDomain Seperated Task) create a pair of WCF services. Both services have their Instancing set to PerSession (no need for singleton which may cause problems in the long run like disconnect). This means the Client will be communicating for each process (AppDomain Separated Task) with two distinct Service instances or a service pair (i.e. Service1 and Service2).
We want a duplex communication in between these two services, which means that both can communicate with the other and pass data (in the form of a DataContract class object).
For this:
1- Declare two services (i.e. in a separate class library) and host them (self hosting or else).
2- Create your DataContract class and add any property, collection, enum etc. as you like. Both services must have a get-set property for this class.
3- In the same class library (where the Service1 and 2 classes reside), create another class. This class will act as a depository for the Service pair instances. It has a static List in order to register the service pair instances (you can identify each service with a GUID).
4- We setup the client proxy using svcUtil.exe (or by code). When the client makes a service request, a service (i.e. service1) will be created by the WCF. At service1, create or launch the process (App Domain Separated Task) as client2 and at its constructor create the Service2 proxy by code.
5- Initialize the Service2 instance (i.e. by a call to the service2) and register the service pair instances at static list of the depository (so that it can be retrieved later for duplex communication). Now we have both service instances and both of them are registered as a pair into a static list.
6- Start communication between both services by making a call from Client1 proxy.
7- At Service1 call method, retrieve the service pair from the static list. Deep copy (DeepClone) the Datacontract class object from Service1 to the Service2 using the get-set property mentioned at (2). (Note that you can use one of the many Deep Clone libraries from Nuget like DeepCloner).
8- Make a call back from Service2. Client2 now has the identical DataContract class property values as Client1
9- Repeat steps 6-8 for Client2 proxy for Service2-Service1 communication.

How to implement .NET code library as a service layer - sharing same BL/CRUD between several applications

Setting: I'm developing an intranet tool set for my department, the main point of which is to centrally manage data quality and accessibility, but also to automate and scale some partial-processes.
Problem: I currently have my business logic in a CLR assembly, which is available on my SQL-Server for other CLR assemblies that run automated ETL directly on the SQL-Server. I am also developing an intranet site, which also needs the code information in that business logic assembly, but referencing the CLR assembly code has been working out sub-optimally, in terms of deployment and code maintenance. Also another department has voiced interest in using the code-base and data for their own intranet site.
Question(s): I've read quite a few Q&A(1,2,3,4,...) on SO to this topic, but I find it a very encompassing, so I'll try to ask questions for a more specific case(i.e. a single BL and Data Access code base)
Is a WCF service the solution I want? All my potential service clients run on the same server, is there maybe another way to reference the same code base both in CLR assembly and website projects? I don't need support for different platforms(ex. Java) - everything is .NET(yay for in-house progr!) - is WCF overkill?
Can code from a WCF service be used like a class library, or do I need to program a new way for accessing classes/methods from the service?
Separation of Development, Test and Productive instances?
Can a WCF service be updated while clients are accessing it, or do I need to schedule maintenance windows? When I update the service, do I need to update the client as well in some way?
Can I dynamically set the service reference, like I currently am dynamically setting the database connection string, depending on if StageConfig = dev, test, or prod?
My CLR assemblies are written for .Net 3.5, but the websites for .NET 4.0, will that pose a problem?
What minimum set of .NET service architecture programming do I need to know to accomplish this? I'll learn more about WCF with time, but I need to evaluate architecting effort and weigh it against getting things done(feature requests). Does the MS tutorial get me the desired skill?
I appreciate answers to only single questions, if you feel you know something, I'll +1 whatever helps me get closer to a complete answer.
OK, so you want to make your code enterprise-wide. There are two fundamental problems to talk about when you want to do this, so I'll structure the answer that way:
You have to understand what WCF is all about.
You have to manage your dependencies correctly.
What WCF is about
WCF is a way of doing RPC/RMI (Remote procedure call/remote method invocation) which means that some client code can call code that is located somewhere else through the network.
A callable WCF service is determined by the ABC triplet:
The service specification is implemented as a .NET interface with a "ServiceContract" attribute. This is the Contract ("C")
The "location" of the service is determined by a pair : Address ("A") and Binding ("B"). The Binding determines the protocol suite to be used for communication between client and server (NetPipe, TCP, HTTP, ...). The Address is a URI following the scheme determined by the Binding ("net.pipe", "net.tcp", "http", ...)
When the client code calls a WCF service at a specific Address, with a specfic Binding, and a specific Contract (which must match what the server at the specific Address and the specific Binding is delivering), WCF generates a proxy object implementing the interface of the contract.
The program delivering the service is any .NET executable. It has to generate one or many WCF Hosts, that will register objects or classes that implement the service contract, and asociate each delivered service to a specific Address and Binding. (possibly many thereof)
The configuration can be through the app .config file, in which you will be specifying ABC triplets and assotiate these triplets with a name that you will use in your application. You can also do it programmatically, which is very easy.
WCF does not address your problem of deploying your application, or the configuration of addresses and binding. It just addresses the problem of letting two executables communicate with each other with strongly-typed objects (through a specific interface). Sharing the service configuration is up to you. You may use a shared .config file on a Windows share, or even set up a LDAP server that will deliver all the data you need to find your service (namely A and B).
Managing your dependencies correctly
In your scenario, there are three actors that want to use your WCF infrastructure:
Your SQLCLR assembly, which will be a client.
The intranet site, which will be another client.
The service host, which will be a server.
The bare minimum number of assemblies will be 4. One for each of the aforementioned actors, and one specifying the contract, which will be used by all three actors. It should contain the following things:
The interface specifying the contract.
All types needed by the interface, which will of course be sent through the network, and therefore must be serializable.
There should be nothing more in it, or else, it will be a maintenance nightmare.
Answer to your questions
I hope that my answer is clear. Let's sum up the answers to your questions.
Is a WCF service the solution I want? All my potential service clients
run on the same server, is there maybe another way to reference the
same code base both in CLR assembly and website projects? I don't need
support for different platforms(ex. Java) - everything is .NET(yay for
in-house progr!) - is WCF overkill?
Everything is overkill. WCF is rather easy to use and scales down very well.
Can code from a WCF service be used like a class library, or do I need
to program a new way for accessing classes/methods from the service?
Setting up a WCF on existing code requires only the implementation of an additional class, and some code creating the Hosts which will serve the aforementioned class.
Calling a WCF service requires the creation of a Channel, which is a .NET (proxy) object implementing the interface.
So basically, your business code remains in the same state.
Separation of Development, Test and Productive instances?
WCF does not take care of that. Different environments, different service addresses. You have to take care of this yourself.
Can a WCF service be updated while clients are accessing it, or do I need to schedule maintenance windows?
It depends on your maintenance policy. Kill the serving process and launch the new version is the basic upgrade mechanism.
When I update the service, do I need to update the client as well in some way?
Provided that you manage your dependencies correctly like I sketched in the previous section, you need to update the clients only if the service specification (the interface) changes.
Can I dynamically set the service reference, like I currently am dynamically setting the database connection string, depending on if StageConfig = dev, test, or prod?
You have to manage that, probably by etting Address and Binding for a service programmatically.
My CLR assemblies are written for .Net 3.5, but the websites for .NET 4.0, will that pose a problem?
Provided that you manage your dependencies correctly like I sketched in the previous section, the only constraint will be the minimum CLR version required by the "contract" assembly.
What minimum set of .NET service architecture programming do I need to know to accomplish this? I'll learn more about WCF with time, but I need to evaluate architecting effort and weigh it against getting things done(feature requests). Does the MS tutorial get me the desired skill?
You'll need the result of these exercises:
Make two executables, a client and a server, that will communicate
through a WCF contract located in a separate DLL. The configuration
should be located in the app .config file.
Make two executables, a client and a server, that will communicate
through a WCF contract
located in a separate DLL. The configuration should be determined programatically.
Try to send a serializable class as a parameter to your service.
Try to send a serializable class as a return value of your service.
After that, you'll need to think about the best/cheapest way to share the Addresses and Bindings of your services.
Hope it helps.

Is shared assembly the only way to create objects from WCF REST service

I am writing an application that is consuming an in-house WCF-based REST service and I'll admit to being a REST newbie. Since I can't use the "Add Service Reference", I don't have ready-made proxy objects representing the return types from the service methods. So far the only way I've been able to work with the service is by sharing the assembly containing the data types exposed by the service.
My problem with this arrangment is that I see only two possibilities:
Implement DTOs (DataContracts) and expose those types from my service. I would still have to share an assembly but this approach would limit the types contained in the assembly to the service contract and DTOs. I don't like to use DTOs just for the sake of using them, though as they add another layer of abstraction and processing time to convert from domain object to DTO and vice versa. Plus, if I want to have business rules, validation, etc. on the client, I'd have to share the domain objects anyways, so is the added complexity necessary.
Support serialization of my domain objects, expose those types and share that assembly. This would allow me to share business and validation logic with the client but it also exposes parts of my domain objects to the client that are meant only for the service app.
Perhaps an example would help the discussion...
My client application will display a list of documents that is obtained from the REST service (a GET operation). The service returns an array of DocumentInfo objects (lightweight, read-only representation of a Document).
When the user selects one of the items, the client retrieves the full Document object from the REST service (GET by id) and displays a data entry form so the user can modify the object. We would want validation rules for a rich user experience.
When the user commits the changes, the Document object is submitted to the REST service (a PUT operation) where it is persisted to the back-end data store.
If the state of the Document allows, the user may "Publish" the Document. In this case, the client POSTs a request to the REST service with the Document.ID value and the service performs the operation by retrieving the server-side Document domain object and calling the Publish method. The Publish method should not be available to the client application.
As I see it, my Document and DocumentInfo objects would have to be in a shared assembly. Doing this makes Document.Publish available to the client. One idea to hide it would be to make the method internal and add an InternalsVisibleTo attribute that allows my service app to call the method and not the client but this seems "smelly."
Am I on the right track or completely missing something?
The classes you use on the server should not be the same classes you use on the client (apart from during the data transfer itself). The best approach is to create a package (assembly/project) containing DTOs, and share these between the server and the client. You did mention that you don't want to create DTO's for the sake of it, but it is best practice. The performance impact of adding extra layers is negligible, and layering actually helps make your application easier to develop and maintain (avoiding situations like yours where the client has access to server code).
I suggest starting with the following packages:
Service: Resides on server only, exposes the service and contains server application logic.
DTO: Resides on both server and client. Contains simple classes which contain data which need to be passed between server and client. Classes have no code apart from properties. These are short lived objects which survive long enough only to transfer data.
Repository: Resides on client only. Calls the server, and turns Model objects into DTO's (and vice versa).
Model: Resides on client only. Contains classes which represent business objects and relationships. Model objects stay in memory throughout the life of the application.
Your client application code should call into Repository to get Model objects (you might also consider looking into MVVM if your not sure how to go about this).
If your service code is sufficiently complex that it needs access to Model classes, you should create a separate Model package (obviously give it a different name) - the only classes which should exist both on server and client are DTO classes.
I thought that I'd post the approach I took while giving credit to both Greg and Jake for helping guide me down the path.
While Jake is correct that deserializing the data on the client can be done with any type as long as it implements the same data contract, enforcing this without WSDL can be a bit tricky. I'm in an environment where other developers will be working with my solution both to support and maintain the existing as well as creating new clients that consume my service. They are used to "Add Service Reference" and going.
Greg's points about using different objects on the client and the server were the most helpful. I was trying to minimize duplicate by sharing my domain layer between the client and the server and that was the root of my confusion. As soon as I separated these into two distinct applications and looked at them in isolation, each with their own use cases, the picture became clearer.
As a result, I am now sharing a Contracts assembly which contains my service contracts so that a client can easily create a channel to the server (using WCF on the client-side) and data contracts representing the DTOs passed between client and service.
On the client, I have ViewModel objects which wrap the Model objects (data contracts) for the UI and use a service agent class to communicate with the service using the service contracts from the shared assembly. So when the user clicks the "Publish" button in the UI, the controller (or command in WPF/SL) calls the Publish method on the service agent passing in the ID of the document to publish. The service agent relays the request to the REST API (Publish operation).
On the server, the REST API is implemented using the same service contracts. In this case, the service works with my domain services, repositories and domain objects to carry out the tasks. So when the Publish service operation is invoked, the service retrieves the Document domain object from the DocumentRepository, calls the Publish method on the object which updates the internal state of the object and then the service passes the updated object to the Update method of the repository to persist the changes.
I am pleased with the outcome as I believe this gives me a more robust and extensible architecture to work with. I can change the ViewModels as needed to support the UI with no concern over poluting the service(s) and, likewise, change the internal implementation of the service operations (domain layer) without affecting the client application(s). All that binds the two are the contracts they share. Pretty clean.
You can serialize your domain objects and then de-serialize them into different types on the client. Both types need to implement the same data contract. All serializable types have at least a default data contract that includes all public read/write properties and fields.

MVVM & WCF - View Model and Model Relationship

I am not understanding how my model can be a WCF service. It makes sense when its an Astoria partial class residing on the client that allows remote calls to do persistence calls, but a WCF service doesn't have properties for model fields that can be used to update a data store.
Even if I could factor out an interface for a model/domain object class into a separate assembly, a silverlight project will not allow me to add that as a reference.
How should my ViewModel encompass my WCF calls? Ultimately the WCF will call a repository assembly implemented in Linq-to-Sql, but apparently those entities are not my model in this scenario, my WCF classes are?
Thanks for any guidance on this.
Also, posts I have read to give a frame of reference:
http://development-guides.silverbaylabs.org/Video/Silverlight-Prism#videolocation_0
http://blogs.conchango.com/davidwynne/archive/2008/12/15/silverlight-and-the-view-viewmodel-pattern.aspx
http://msdn.microsoft.com/en-us/magazine/dd458800.aspx
When you create a service reference to a WCF service in a Silverlight project it also generates an interface for that Service, this is similar to David Wynns IFeedService in the articles you listed above. The service reference will also generate proxy objects that represent the objects used by the service (Product, Category etc).
The important thing to note is that the service interface isn't the model, it's how you access the model. Going back to David's example, his ViewModel exposes a list of items (his model), this list is retrieved using the service.
If you're looking to share code between the client and server I'd reccomend looking into something like RIA Services. If this isn't for you then I'd look at a few articles around about sharing code between the server and client (via Add as Link).
Hope this helps