Separating object methods from object data - oop

Following SRP and KISS principle I designed an object with properties only, but I need methods to work with the objects. What is the best way to separate entity object data and entity set object methods?
Currently I created the following objects:
Pet Entity object
Attribute Name
Attribute Age
Pet Entity Set object
List of Pet objects
Pet Engine object
Method LoadPets of Pet Entity Set
Method GetPetByName of Pet Entity
Method GetPetsByAge of Pet Entity Set
Is this the best way to design the objects?
I'm developing in .net
Thanks.

You've implemented the Anemic Domain Model antipattern. Classes should implement the methods that they need, that doesn't break SRP, but IMHO SRP is way over rated anyway.

The general idea is to keep the methods close to the data they operate on. The construct that combines data and operations is known as a class.
Seriously, why do you think it's a good idea to separate the data from the operations? That's the opposite direction to where we've been going for decades!

Use a functional language with support for pattern matching. Since you're on .net, F# is the obvious choice.
This works well for message oriented systems where you have mostly stateless nodes which transform messages then pass messages to other nodes. In these scenarios, you don't care about mutating the data in the message nor about the identity of message; you care about advancing the processing in each node and sending out more messages.
You're not doing object oriented design, and object oriented languages do not support this paradigm well - they tie a mutable bag of data to an object with identity, rather than creating a reactive system of message transformers.
In effect, this requires you to take the dual of the system - the messages in a reactive system correspond to the method and arguments in object oriented systems. Roughly, the state which is in the fields of the objects of an OO program is kept the call stack of a reactive program, and the state which is the call stack of the OO program is kept in the fields of the messages in the reactive program.

Related

Service access Entity attributes

In oop we seek to encapsulation. We try not to expose internal state via getters or by public fields, only expose methods.
So far so good.
In situation when we would like to operate on multiple Entities we introduce Service.
But how this service can operate freely on these entities?
If all (both Service and Entities) were in the same package, Entities could expose package private methods or fields and Service could use them, preserving encapsulation. But what when Entities and Service are from different packages? It seems that Entities should either expose public getters (first step to anemic model and leackage of logic from Entities), or public methods executing logic that is specific to the needs of service, possibly introduced only by requirements of this service - also seems bad. How to tackle this?
In the context of OO, the most important thing for you to understand is that objects respond to messages, and that in OOP in particular, methods are how these responses are implemented.
For example, imagine you have a Person object to which you (as the programmer) have assigned the responsibility to respond to the "grow" message. Generally, you would implement that as a Person.grow() method, like this.
class Person {
int age;
public void grow() { this.age++; }
}
This seems fairly obvious, but you must note that from the message sender's perspective, how Person object reacts is meaningless. For all it cares, the method Person.grow() could be triggering a missile launch, and it would not matter because some other object (or objects) could be responding in the right way (for example, a UI component updating itself on the screen). However, you decided that when the Person object handles the "grow" message, it must increment the value of its age attribute. This is encapsulation.
So, to address your concern, "public methods executing logic that is specific to the needs of service, possibly introduced only by requirements of this service - also seems bad", it is not bad at all because you are designing the entities to respond to messages from the services in specific ways to match the requirements of your application. The important thing to bear in mind is that the services do not dictate how the entities behave, but rather the entities respond in their own way to requests from the services.
Finally, you might be asking yourself: how do entities know that they need to respond to certain messages? This is easy to answer: YOU decide how to link messages to responses. In other words, you think about the requirements of your application (what "messages" will be sent by various objects) and how they will be satisfied (how and which objects will respond to messages).
In situation when we would like to operate on multiple Entities we introduce Service.
No we don't. Well, I guess some people do, but the point is they shouldn't.
In object-orientation, we model a particular problem domain. We don't (again, shouldn't) discriminate based on what amount of other objects a single object operates. If I have to model an Appointment and a collection of Appointment I don't introduce an AppointmentService, I introduce a Schedule or Timetable, or whatever is appropriate for the domain.
The distinction of Entity and Service is not domain-conform. It is purely technical and most often a regression into procedural thinking, where an Entity is data and the Service is a procedure to act on it.
DDD as is practiced today is not based on OOP, it just uses object syntax. One clear indication is that in most projects entities are directly persisted, even contain database ids or database-related annotations.
So either do OOP or do DDD, you can't really do both. Here is a talk of mine (talk is german but slides are in english) about OO and DDD.
I don't see the usage of getters as a step towards an anaemic model. Or at least, as everything in programming, it depends.
Downside of anaemic model is that every component accessing the object can mutate it without any enforcing of its invariants (opening to possible inconsistency in data), it can be done easily using the setter methods.
(I will use the terms command and query to indicate methods that modify the state of the objects and methods that just return data without changing anything)
The point of having an aggregate/entity is to enforce the object invariants, so it exposes "command" methods that don't reflect the internal structure of the object, but instead are "domain oriented" (using the "ubiquitous language" for their naming), exposing its "domain behavior" (an avoidance of get/set naming is suggested because they are standard naming for representing the object internal structure).
This is for what concern the set methods, what about get?
As set methods can be seen as "command" of the aggregate, you can see the getters as "query" methods used to ask data to the aggregate. Asking data to an aggregate is totally fine, if this doesn't break the responsability of the aggregate of enforcing invariants. This means that you should watch out to what the query method returns.
If the query method result is a value object, so, immutable, it is totally fine to have it. In this way who query the aggregate has in return something that can be only read.
So you could have query methods doing calculation using the object internal state (eg. A method int missingStudents() that calculate the number of missing student for a Lesson entity that has the totalNumber of students and a List<StudentId> in its internal state), or simple methods like List<StudentId> presentStudent() that just returns the list in its internal state, but what change from a List<StudentId> getStudents() its just the name).
So if the get method return something that is immutable who use it can't break the invariants of the aggregate.
If the method returns a mutable object that is part of the aggregate state, whoever access the object can query for that object and now can mutate something that stays inside the aggregate without passing for the right command methods, skipping invariants check (unless it is something wanted and managed).
Other possibility is that the object is created on the fly during the query and is not part of the aggregate state, so if someone access it, also if it is mutable, the aggregate is safe.
In the end, get and set methods are seen as an ugly thing if you are a ddd extremist, but sometimes they can also be useful being a standard naming convention and some libraries work on this naming convention, so I don't see them bad, if they don't break the aggregate/entity responsibilities.
As last thing, when you say In situation when we would like to operate on multiple Entities we introduce Service., this is true, but also a service should operate (mutate, save) on a single aggregate, but this is another topic 😊.

when should assign responsibility to service instead of entity object?

Is there any rule of thumb that when should assign responsibility to service object instead of entity object? I really get confused about it.
I would argue that there's no rule of thumb here. Working out the responsibilities of classes is the skill in designing OO software.
That said, your class design should give you some hints. For example, if you had planned to create a method as part of an entity but that method needs data that's not part of the entity, that would suggest the method is operating on a level above the entity, potentially a domain service.
As far as I know about domain driven design, entity objects are the representation of some complex data. Most probably they do not have any business logic around it.
So if you are thinking about the responsibility of just data holding then it would go in Entity Object. Service Objects are the one who would own the responsibility of complex logic on given Value or Entity object with provided context.
Use domain services when you need to operate on multiple aggrigate roots.

Does MVC break encapsulation?

Let's say I have an class to model a city. Its characteristics are the following:
It has only two properties "name" and "population", both private, that are set in the constructor.
It has getters for these properties, but not setters.
I don't want any user of this class to set the properties, I want them to use a public .edit() method.
This method needs opens up a form to input the new name of the city and population, i.e.: a view. Then, if I have a view, I would like to implement the MVC pattern, so the idea would be that the controller receives the .edit() call, renders the view, retrieves the data back, and sends it to the view so that it changes its state.
But, if I do so, I have to change the properties of the city model from private to public. So, if any user instantiates my class, she/he can directly change the properties.
So, the philosophical question: Isn't that breaking the encapsulation?
EDIT Just to make it more explicit:
This city_instance.edit() method should be the only way to mutate the object.
Besides, I see that part of my problems comes from the misunderstanding that a model is an object (you can read that on php mvc frameworks), when it is actually a different abstraction, it's a layer that groups the business logic (domain objects + I guess more things)
Disclaimer: I don't really understand where are you proposing the .edit() method to be implemented, so it would help if you could clarify that a little bit there.
The first thing to consider here is that in the bulleted list of your question you seem to imply that a City instance acts like an immutable object: it takes its instance variables in the constructor and doesn't allow anybody in the outside to change them. However, you later state that you actually want to create a way to visually edit a City instance. This two requirements are clearly going to create some tension, since they are kind of opposites.
If you go the MVC approach, by separating the view from the model you have two main choices:
Treat your City objects as immutable and, instead of editing an instance when the values are changed in the form, throw away the original object and create a new one.
Provide a way to mutate an existing City instance.
The first approach keeps your model intact if you actually consider a City as an immutable object. For the second one there are many different ways to go:
The most standard way is to provide, in the City class, a mutator. This can have the shape of independent setters for each property or a common message (I think this is the .edit() method you mentioned) to alter many properties at once by taking an array. Note that here you don't take a form object as a parameter, since models should not be aware of the views. If you want your view to take note of internal changes in the model, you use the Observer pattern.
Use "friend" classes for controllers. Some languages allow for friend classes to access an object's internals. In this case you could create a controller that is a friend class of your model that can make the connection between the model and the view without having to add mutators to your model.
Use reflection to accomplish something similar to the friend classes.
The first of this three approaches is the only language agnostic choice. Whether that breaks encapsulation or not is kind of difficult to say, since the requirements themselves would be conflicting (It would basically mean wanting to have a model separated from the view that can be altered by the user but that doesn't allow the model itself to be changed for the outside). I would however agree that separating the model from the view promotes having an explicit mutation mechanism if you want mutable instances.
HTH
NOTE: I'm referring to MVC as it applies to Web applications. MVC can apply to many kinds of apps, and it's implemented in many kinds of ways, so it's really hard to say MVC does or does not do any specific thing unless you are talking strictly about something defined by the pattern, and not a particular implementation.
I think you have a very specific view of what "encapsulation" is, and that view does not agree with the textbook definition of encapsulation, nor does it agree with the common usage of it. There is no definition of "Encapsulation" I can find that requires that there be no setters. In fact, since Setters are in and of themselves methods that be used to "edit" the object, it's kind of a silly argument.
From the Wikipedia entry (note where it says "like getter and setter"):
In general, encapsulation is one of the four fundamentals of OOP (object-oriented programming). Encapsulation is to hide the variables or something inside a class, preventing unauthorized parties to use. So the public methods like getter and setter access it and the other classes call these methods for accessing.
http://en.wikipedia.org/wiki/Encapsulation_(object-oriented_programming)
Now, that's not to say that MVC doesn't break encapsulation, I'm just saying that your idea of what Encapsulation is is very specific and not particularly canonical.
Certainly, there are a number of problems that using Getters and Setters can cause, such as returning lists that you can then change directly outside of the object itself. You have to be careful (if you care) to keep your data hidden. You can also replace a collection with another collection, which is probably not what you intend.
The Law of Demeter is more relevant here than anything else.
But all of this is really just a red herring anyways. MVC is only about the GUI, and the GUI should be as simple as possible. It should have almost no logic in either the view or the controller. You should be using simple view models to deserialize your form data into a simple structure, which can the be used to apply to any business architecture you like (if you don't want setters, then create your business layer with objects that don't use setters and use mutattors.).
There is little need for complex architecture in the UI layer. The UI layer is more of a boundary and gateway that translates the flat form and command nature of HTTP to whatever business object model you choose. As such, it's not going to be purely OO at the UI level, because HTTP isn't.
This is called an Impedance Mismatch, which is often associated with ORM's, because Object models do not map easily to relational models. The same is true of HTTP to Business objects. You can think of MVC as a corollary to an ORM in that respect.

Repository design for complex objects?

What is the best way to design repositories for complex objects, assuming use of an ORM such as NHibernate or Entity Framework?
I am creating an app using Entity Framework 4. The app uses complex objects--a Foo object contains a collection of Bar objects in a Foo.Bars property, and so on. In the past, I would have created a FooRepository, and then a BarRepository, and I would inject a reference to the BarRepository into the FooRepository constructor.
When a query is passed to the FooRepository, it would call on the BarRepository as needed to construct the Foo.Bars property for each Foo object. And when a Foo object is passed to the FooRepository for persistence, the repository would call the BarRepository to persist the objects in the Foo.Bars property.
My question is pretty simple: Is that a generally accepted way to set up the repositories? Is there a better approach? Thanks for your help.
In domain-driven design, there is the concept of a "root aggregate" object. The accepted answer to a related question has good information on what it is and how you would use it in your design. I don't know about the Entity Framework but NHibernate does not require the usage pattern you are describing. As long as all the nested objects and their relationships are properly mapped to tables, saving the aggregate root will also save all its child object. The exception is when a nested object has specific business logic that needs to performed as part of its access or persistence. In that case, you would need to pass the "child" repositories so you are not duplicating that business logic.
Repository pattern helps grouping of business transactions among related entities. Meaning if you have two domain objects foo and bar and have a common transactions like GetList(),Update() then a common repository like FoobarReporsitory can be created. You can even abstract that to an interface called IFoobarReporsitory to make application loosely coupled.

Should entities have behavior or not?

Should entities have behavior? or not?
Why or why not?
If not, does that violate Encapsulation?
If your entities do not have behavior, then you are not writing object-oriented code. If everything is done with getters and setters and no other behavior, you're writing procedural code.
A lot of shops say they're practicing SOA when they keep their entities dumb. Their justification is that the data structure rarely changes, but the business logic does. This is a fallacy. There are plenty of patterns to deal with this problem, and they don't involve reducing everything to bags of getters and setters.
Entities should not have behavior. They represent data and data itself is passive.
I am currently working on a legacy project that has included behavior in entities and it is a nightmare, code that no one wants to touch.
You can read more on my blog post: Object-Oriented Anti-Pattern - Data Objects with Behavior .
[Preview] Object-Oriented Anti-Pattern - Data Objects with Behavior:
Attributes and Behavior
Objects are made up of attributes and behavior but Data Objects by definition represent only data and hence can have only attributes. Books, Movies, Files, even IO Streams do not have behavior. A book has a title but it does not know how to read. A movie has actors but it does not know how to play. A file has content but it does not know how to delete. A stream has content but it does not know how to open/close or stop. These are all examples of Data Objects that have attributes but do not have behavior. As such, they should be treated as dumb data objects and we as software engineers should not force behavior upon them.
Passing Around Data Instead of Behavior
Data Objects are moved around through different execution environments but behavior should be encapsulated and is usually pertinent only to one environment. In any application data is passed around, parsed, manipulated, persisted, retrieved, serialized, deserialized, and so on. An entity for example usually passes from the hibernate layer, to the service layer, to the frontend layer, and back again. In a distributed system it might pass through several pipes, queues, caches and end up in a new execution context. Attributes can apply to all three layers, but particular behavior such as save, parse, serialize only make sense in individual layers. Therefore, adding behavior to data objects violates encapsulation, modularization and even security principles.
Code written like this:
book.Write();
book.Print();
book.Publish();
book.Buy();
book.Open();
book.Read();
book.Highlight();
book.Bookmark();
book.GetRelatedBooks();
can be refactored like so:
Book book = author.WriteBook();
printer.Print(book);
publisher.Publish(book);
customer.Buy(book);
reader = new BookReader();
reader.Open(Book);
reader.Read();
reader.Highlight();
reader.Bookmark();
librarian.GetRelatedBooks(book);
What a difference natural object-oriented modeling can make! We went from a single monstrous Book class to six separate classes, each of them responsible for their own individual behavior.
This makes the code:
easier to read and understand because it is more natural
easier to update because the functionality is contained in smaller encapsulated classes
more flexible because we can easily substitute one or more of the six individual classes with overridden versions.
easier to test because the functionality is separated, and easier to mock
It depends on what kind of entity they are -- but the term "entity" implies, to me at least, business entities, in which case they should have behavior.
A "Business Entity" is a modeling of a real world object, and it should encapsulate all of the business logic (behavior) and properties/data that the object representation has in the context of your software.
If you're strictly following MVC, your model (entities) won't have any inherent behavior. I do however include whatever helper methods allow the easiest management of the entities persistence, including methods that help with maintaining its relationship to other entities.
If you plan on exposing your entities to the world, you're better off (generally) keeping behavior off of the entity. If you want to centralize your business operations (i.e. ValidateVendorOrder) you wouldn't want the Order to have an IsValid() method that runs some logic to validate itself. You don't want that code running on a client (what if they fudge it. i.e. akin to not providing any client UI to set the price on an item being placed in a shopping cart, but posting a a bogus price on the URL. If you don't have server-side validation, that's not good! And duplicating that validation is...redundant...DRY (Don't Repeat Yourself).
Another example of when having behaviors on an entity just doesn't work is the notion of lazy loading. Alot of ORMs today will allow you to lazy load data when a property is accessed on an entities. If you're building a 3-tier app, this just doesn't work as your client will ultimately inadvertantly try to make database calls when accessing properties.
These are my off-the-top-of-my-head arguments for keeping behavior off of entities.