Efficiently storing 7.300.000.000 rows - sql

How would you tackle the following storage and retrieval problem?
Roughly 2.000.000 rows will be added each day (365 days/year) with the following information per row:
id (unique row identifier)
entity_id (takes on values between 1 and 2.000.000 inclusive)
date_id (incremented with one each day - will take on values between 1 and 3.650 (ten years: 1*365*10))
value_1 (takes on values between 1 and 1.000.000 inclusive)
value_2 (takes on values between 1 and 1.000.000 inclusive)
entity_id combined with date_id is unique. Hence, at most one row per entity and date can be added to the table. The database must be able to hold 10 years worth of daily data (7.300.000.000 rows (3.650*2.000.000)).
What is described above is the write patterns. The read pattern is simple: all queries will be made on a specific entity_id. I.e. retrieve all rows describing entity_id = 12345.
Transactional support is not needed, but the storage solution must be open-sourced. Ideally I'd like to use MySQL, but I'm open for suggestions.
Now - how would you tackle the described problem?
Update: I was asked to elaborate regarding the read and write patterns. Writes to the table will be done in one batch per day where the new 2M entries will be added in one go. Reads will be done continuously with one read every second.

"Now - how would you tackle the described problem?"
With simple flat files.
Here's why
"all queries will be made on a
specific entity_id. I.e. retrieve all
rows describing entity_id = 12345."
You have 2.000.000 entities. Partition based on entity number:
level1= entity/10000
level2= (entity/100)%100
level3= entity%100
The each file of data is level1/level2/level3/batch_of_data
You can then read all of the files in a given part of the directory to return samples for processing.
If someone wants a relational database, then load files for a given entity_id into a database for their use.
Edit On day numbers.
The date_id/entity_id uniqueness rule is not something that has to be handled. It's (a) trivially imposed on the file names and (b) irrelevant for querying.
The date_id "rollover" doesn't mean anything -- there's no query, so there's no need to rename anything. The date_id should simply grow without bound from the epoch date. If you want to purge old data, then delete the old files.
Since no query relies on date_id, nothing ever needs to be done with it. It can be the file name for all that it matters.
To include the date_id in the result set, write it in the file with the other four attributes that are in each row of the file.
Edit on open/close
For writing, you have to leave the file(s) open. You do periodic flushes (or close/reopen) to assure that stuff really is going to disk.
You have two choices for the architecture of your writer.
Have a single "writer" process that consolidates the data from the various source(s). This is helpful if queries are relatively frequent. You pay for merging the data at write time.
Have several files open concurrently for writing. When querying, merge these files into a single result. This is helpful is queries are relatively rare. You pay for merging the data at query time.

Use partitioning. With your read pattern you'd want to partition by entity_id hash.

You might want to look at these questions:
Large primary key: 1+ billion rows MySQL + InnoDB?
Large MySQL tables
Personally, I'd also think about calculating your row width to give you an idea of how big your table will be (as per the partitioning note in the first link).
HTH.,
S

Your application appears to have the same characteristics as mine. I wrote a MySQL custom storage engine to efficiently solve the problem. It is described here
Imagine your data is laid out on disk as an array of 2M fixed length entries (one per entity) each containing 3650 rows (one per day) of 20 bytes (the row for one entity per day).
Your read pattern reads one entity. It is contiguous on disk so it takes 1 seek (about 8mllisecs) and read 3650x20 = about 80K at maybe 100MB/sec ... so it is done in a fraction of a second, easily meeting your 1-query-per-second read pattern.
The update has to write 20 bytes in 2M different places on disk. IN simplest case this would take 2M seeks each of which takes about 8millisecs, so it would take 2M*8ms = 4.5 hours. If you spread the data across 4 “raid0” disks it could take 1.125 hours.
However the places are only 80K apart. In the which means there are 200 such places within a 16MB block (typical disk cache size) so it could operate at anything up to 200 times faster. (1 minute) Reality is somewhere between the two.
My storage engine operates on that kind of philosophy, although it is a little more general purpose than a fixed length array.
You could code exactly what I have described. Putting the code into a MySQL pluggable storage engine means that you can use MySQL to query the data with various report generators etc.
By the way, you could eliminate the date and entity id from the stored row (because they are the array indexes) and may be the unique id – if you don't really need it since (entity id, date) is unique, and store the 2 values as 3-byte int. Then your stored row is 6 bytes, and you have 700 updates per 16M and therefore a faster inserts and a smaller file.
Edit Compare to Flat Files
I notice that comments general favor flat files. Don't forget that directories are just indexes implemented by the file system and they are generally optimized for relatively small numbers of relatively large items. Access to files is generally optimized so that it expects a relatively small number of files to be open, and has a relatively high overhead for open and close, and for each file that is open. All of those "relatively" are relative to the typical use of a database.
Using file system names as an index for a entity-Id which I take to be a non-sparse integer 1 to 2Million is counter-intuitive. In a programming you would use an array, not a hash-table, for example, and you are inevitably going to incur a great deal of overhead for an expensive access path that could simply be an array indeing operation.
Therefore if you use flat files, why not use just one flat file and index it?
Edit on performance
The performance of this application is going to be dominated by disk seek times. The calculations I did above determine the best you can do (although you can make INSERT quicker by slowing down SELECT - you can't make them both better). It doesn't matter whether you use a database, flat-files, or one flat-file, except that you can add more seeks that you don't really need and slow it down further. For example, indexing (whether its the file system index or a database index) causes extra I/Os compared to "an array look up", and these will slow you down.
Edit on benchmark measurements
I have a table that looks very much like yours (or almost exactly like one of your partitions). It was 64K entities not 2M (1/32 of yours), and 2788 'days'. The table was created in the same INSERT order that yours will be, and has the same index (entity_id,day). A SELECT on one entity takes 20.3 seconds to inspect the 2788 days, which is about 130 seeks per second as expected (on 8 millisec average seek time disks). The SELECT time is going to be proportional to the number of days, and not much dependent on the number of entities. (It will be faster on disks with faster seek times. I'm using a pair of SATA2s in RAID0 but that isn't making much difference).
If you re-order the table into entity order
ALTER TABLE x ORDER BY (ENTITY,DAY)
Then the same SELECT takes 198 millisecs (because it is reading the order entity in a single disk access).
However the ALTER TABLE operation took 13.98 DAYS to complete (for 182M rows).
There's a few other things the measurements tell you
1. Your index file is going to be as big as your data file. It is 3GB for this sample table. That means (on my system) all the index at disk speeds not memory speeds.
2.Your INSERT rate will decline logarithmically. The INSERT into the data file is linear but the insert of the key into the index is log. At 180M records I was getting 153 INSERTs per second, which is also very close to the seek rate. It shows that MySQL is updating a leaf index block for almost every INSERT (as you would expect because it is indexed on entity but inserted in day order.). So you are looking at 2M/153 secs= 3.6hrs to do your daily insert of 2M rows. (Divided by whatever effect you can get by partition across systems or disks).

I had similar problem (although with much bigger scale - about your yearly usage every day)
Using one big table got me screeching to a halt - you can pull a few months but I guess you'll eventually partition it.
Don't forget to index the table, or else you'll be messing with tiny trickle of data every query; oh, and if you want to do mass queries, use flat files

Your description of the read patterns is not sufficient. You'll need to describe what amounts of data will be retrieved, how often and how much deviation there will be in the queries.
This will allow you to consider doing compression on some of the columns.
Also consider archiving and partitioning.

If you want to handle huge data with millions of rows it can be considered similar to time series database which logs the time and saves the data to the database. Some of the ways to store the data is using InfluxDB and MongoDB.

Related

How do explicit table partitions in Databricks affect write performance?

We have the following scenario:
We have an existing table containing approx. 15 billion records. It was not explicitly partitioned on creation.
We are creating a copy of this table with partitions, hoping for faster read time on certain types of queries.
Our tables are on Databricks Cloud, and we use Databricks Delta.
We commonly filter by two columns, one of which is the ID of an entity (350k distinct values) and one of which is the date at which an event occurred (31 distinct values so far, but increasing every day!).
So, in creating our new table, we ran a query like this:
CREATE TABLE the_new_table
USING DELTA
PARTITIONED BY (entity_id, date)
AS SELECT
entity_id,
another_id,
from_unixtime(timestamp) AS timestamp,
CAST(from_unixtime(timestamp) AS DATE) AS date
FROM the_old_table
This query has run for 48 hours and counting. We know that it is making progress, because we have found around 250k prefixes corresponding to the first partition key in the relevant S3 prefix, and there are certainly some big files in the prefixes that exist.
However, we're having some difficulty monitoring exactly how much progress has been made, and how much longer we can expect this to take.
While we waited, we tried out a query like this:
CREATE TABLE a_test_table (
entity_id STRING,
another_id STRING,
timestamp TIMESTAMP,
date DATE
)
USING DELTA
PARTITIONED BY (date);
INSERT INTO a_test_table
SELECT
entity_id,
another_id,
from_unixtime(timestamp) AS timestamp,
CAST(from_unixtime(timestamp) AS DATE) AS date
FROM the_old_table
WHERE CAST(from_unixtime(timestamp) AS DATE) = '2018-12-01'
Notice the main difference in the new table's schema here is that we partitioned only on date, not on entity id. The date we chose contains almost exactly four percent of the old table's data, which I want to point out because it's much more than 1/31. Of course, since we are selecting by a single value that happens to be the same thing we partitioned on, we are in effect only writing one partition, vs. the probably hundred thousand or so.
The creation of this test table took 16 minutes using the same number of worker-nodes, so we would expect (based on this) that the creation of a table 25x larger would only take around 7 hours.
This answer appears to partially acknowledge that using too many partitions can cause the problem, but the underlying causes appear to have greatly changed in the last couple of years, so we seek to understand what the current issues might be; the Databricks docs have not been especially illuminating.
Based on the posted request rate guidelines for S3, it seems like increasing the number of partitions (key prefixes) should improve performance. The partitions being detrimental seems counter-intuitive.
In summary: we are expecting to write many thousands of records in to each of many thousands of partitions. It appears that reducing the number of partitions dramatically reduces the amount of time it takes to write the table data. Why would this be true? Are there any general guidelines on the number of partitions that should be created for data of a certain size?
You should partition your data by date because it sounds like you are continually adding data as time passes chronologically. This is the generally accepted approach to partitioning time series data. It means that you will be writing to one date partition each day, and your previous date partitions are not updated again (a good thing).
You can of course use a secondary partition key if your use case benefits from it (i.e. PARTITIONED BY (date, entity_id))
Partitioning by date will necessitate that your reading of this data will always be made by date as well, to get the best performance. If this is not your use case, then you would have to clarify your question.
How many partitions?
No one can give you answer on how many partitions you should use because every data set (and processing cluster) is different. What you do want to avoid is "data skew", where one worker is having to process huge amounts of data, while other workers are idle. In your case that would happen if one clientid was 20% of your data set, for example. Partitioning by date has to assume that each day has roughly the same amount of data, so each worker is kept equally busy.
I don't know specifically about how Databricks writes to disk, but on Hadoop I would want to see each worker node writing it's own file part, and therefore your write performance is paralleled at this level.
I am not a databricks expert at all but hopefully this bullets can help
Number of partitions
The number of partitions and files created will impact the performance of your job no matter what, especially using s3 as data storage however this number of files should be handled easily by a cluster of descent size
Dynamic partition
There is a huge difference between partition dynamically by your 2 keys instead of one, let me try to address this in more details.
When you partition data dynamically, depending on the number of tasks and the size of the data, a big number of small files could be created per partition, this could (and probably will) impact the performance of next jobs that will require use this data, especially if your data is stored in ORC, parquet or any other columnar format. Note that this will require only a map only job.
The issue explained before, is addressed in different ways, being the most common the file consolidation. For this, data is repartitioned with the purpose of create bigger files. As result, shuffling of data will be required.
Your queries
For your first query, the number of partitions will be 350k*31 (around 11MM!), which is really big considering the amount of shuffling and task required to handle the job.
For your second query (which takes only 16 minutes), the number of required tasks and shuffling required is much more smaller.
The number of partitions (shuffling/sorting/tasks scheduling/etc) and the time of your job execution does not have a linear relationship, that is why the math doesn't add up in this case.
Recomendation
I think you already got it, you should split your etl job in 31 one different queries which will allow to optimize the execution time
My recommendations in case of occupying partitioned columns is
Identify the cardinality of all the columns and select those that have a finite amount in time, therefore exclude identifiers and date columns
Identify the main search to the table, perhaps it is date or by some categorical field
Generate sub columns with a finite cardinality in order to speed up the search example in the case of dates it is possible to decompose it into year, month, day, etc. , or in the case of integer identifiers, decompose them into the integer division of these IDs% [1,2,3 ...]
As I mentioned earlier, using columns with a high cardinality to partition, will cause poor performance, by generating a lot of files which is the worst working case.
It is advisable to work with files that do not exceed 1 GB for this when creating the delta table it is recommended to occupy "coalesce (1)"
If you need to perform updates or insertions, specify the largest number of partitioned columns to rule out the inceserary cases of file reading, which is very effective to reduce times.

How to store millions of statistics records efficiently?

We have about 1.7 million products in our eshop, we want to keep record of how many views this products had for 1 year long period, we want to record the views every atleast 2 hours, the question is what structure to use for this task?
Right now we tried keeping stats for 30 days back in records that have 2 columns classified_id,stats where stats is like a stripped json with format date:views,date:views... for example a record would look like
345422,{051216:23212,051217:64233} where 051216,051217=mm/dd/yy and 23212,64233=number of views
This of course is kinda stupid if you want to go 1 year back since if you want to get the sum of views of say 1000 products you need to fetch like 30mb from the database and calculate it your self.
The other way we think of going right now is just to have a massive table with 3 columns classified_id,date,view and store its recording on its own row, this of course will result in a huge table with hundred of millions of rows , for example if we have 1.8 millions of classifieds and keep records 24/7 for one year every 2 hours we need
1800000*365*12=7.884.000.000(billions with a B) rows which while it is way inside the theoritical limit of postgres I imagine the queries on it(say for updating the views), even with the correct indices, will be taking some time.
Any suggestions? I can't even imagine how google analytics stores the stats...
This number is not as high as you think. In current work we store metrics data for websites and total amount of rows we have is much higher. And in previous job I worked with pg database which collected metrics from mobile network and it collected ~2 billions of records per day. So do not be afraid of billions in number of records.
You will definitely need to partition data - most probably by day. With this amount of data you can find indexes quite useless. Depends on planes you will see in EXPLAIN command output. For example that telco app did not use any indexes at all because they would just slow down whole engine.
Another question is how quick responses for queries you will need. And which steps in granularity (sums over hours/days/weeks etc) for queries you will allow for users. You may even need to make some aggregations for granularities like week or month or quarter.
Addition:
Those ~2billions of records per day in that telco app took ~290GB per day. And it meant inserts of ~23000 records per second using bulk inserts with COPY command. Every bulk was several thousands of records. Raw data were partitioned by minutes. To avoid disk waits db had 4 tablespaces on 4 different disks/ arrays and partitions were distributed over them. PostreSQL was able to handle it all without any problems. So you should think about proper HW configuration too.
Good idea also is to move pg_xlog directory to separate disk or array. No just different filesystem. It all must be separate HW. SSDs I can recommend only in arrays with proper error check. Lately we had problems with corrupted database on single SSD.
First, do not use the database for recording statistics. Or, at the very least, use a different database. The write overhead of the logs will degrade the responsiveness of your webapp. And your daily backups will take much longer because of big tables that do not need to be backed up so frequently.
The "do it yourself" solution of my choice would be to write asynchronously to log files and then process these files afterwards to construct the statistics in your analytics database. There is good code snippet of async write in this response. Or you can benchmark any of the many loggers available for Java.
Also note that there are products like Apache Kafka specifically designed to collect this kind of information.
Another possibility is to create a time series in column oriented database like HBase or Cassandra. In this case you'd have one row per product and as many columns as hits.
Last, if you are going to do it with the database, as #JosMac pointed, create partitions, avoid indexes as much as you can. Set fillfactor storage parameter to 100. You can also consider UNLOGGED tables. But read thoroughly PostgreSQL documentation before turning off the write-ahead log.
Just to raise another non-RDBMS option for you (so a little off topic), you could send text files (CSV, TSV, JSON, Parquet, ORC) to Amazon S3 and use AWS Athena to query it directly using SQL.
Since it will query free text files, you may be able to just send it unfiltered weblogs, and query them through JDBC.

Proper way to create dynamic 1:M SQL table

Simplified example: Two tables - people and times. Goal is to keep track of all the times a person walks through a doorway.
A person could have between 0 and 50 entries in the times table daily.
What is the proper and most efficient way to keep track of these records? Is it
times table
-----------
person_id
timestamp
I'm worried that this table can get well over a million records rather quickly. Insertion and retrieval times are of utmost importance.
ALSO: Obviously non-normalized but would it be a better idea to do
times table
-----------
person_id
serialized_timestamps_for_the_day
date
We need to access each individual timestamp for the person but ONLY query records on date or the person's id.
The second solution has some problems:
Since you need to access individual timestamps1, serialized_timestamps_for_the_day cannot be considered atomic and would violate the 1NF, causing a bunch of problems.
On top of that, you are introducing a redundancy: the date can be inferred from the contents of the serialized_timestamps_for_the_day, and your application code would need to make sure they never become "desynchronized", which is vulnerable to bugs.2
Therefore go with the first solution. If properly indexed, a modern database on modern hardware can handle much more than mere "well over a million records". In this specific case:
A composite index on {person_id, timestamp} will allow you to query for person or combination of person and date by a simple index range scan, which can be very efficient.
If you need just "by date" query, you'll need an index on {timestamp}. You can easily search for all timestamps within a specific date by searching for a range 00:00 to 24:00 of the given day.
1 Even if you don't query for individual timestamps, you still need to write them to the database one-by-one. If you have a serialized field, you first need to read the whole field to append just one value, and then write the whole result back to the database, which may become a performance problem rather quickly. And there are other problems, as mentioned in the link above.
2 As a general rule, what can be inferred should not be stored, unless there is a good performance reason to do so, and I don't see any here.
Consider what are we talking about here. Accounting for just raw data (event_time, user_id) this would be (4 + 4) * 1M ~ 8MB per 1M rows. Let's try to roughly estimate this in a DB.
One integer 4 bytes, timestamp 4 bytes; row header, say 18 bytes -- this brings the first estimate of the row size to 4 + 4 + 18 = 26 bytes. Using page fill factor of about 0.7; ==> 26 / 0.7 ~ 37 bytes per row.
So, for 1 M rows that would be about 37 MB. You will need index on (user_id, event_time), so let's simply double the original to 37 * 2 = 74 MB.
This brings the very rough, inacurate estimate to 74MB per 1M rows.
So, to keep this in memory all the time, you would need 0.074 GB for each 1M rows of this table.
To get better estimate, simply create a table, add the index and fill it with few million rows.
Given the expected data volume, this can all easily be tested with 10M rows even on a laptop -- testing always beats speculating.
P.S. Your option 2 does not look "obviously better idea" too me at all.
I think first option would be a better option.
Even if you go for second option, the size of the index might not reduce. In fact there will be an additional column.
And the data for different users is not related, you can shard the database based on person_id. i.e. let's say your data cannot be fit on a single database server node and requires two nodes. Then data for half the users will be stored on one node and rest of the data will be stored on another node.
This can be done using RDBMS like MySQL or Document oriented databases like MongoDB and OrientDB as well.

Appropriate query and indexes for a logging table in SQL

Assume a table named 'log', there are huge records in it.
The application usually retrieves data by simple SQL:
SELECT *
FROM log
WHERE logLevel=2 AND (creationData BETWEEN ? AND ?)
logLevel and creationData have indexes, but the number of records makes it take longer to retrieve data.
How do we fix this?
Look at your execution plan / "EXPLAIN PLAN" result - if you are retrieving large amounts of data then there is very little that you can do to improve performance - you could try changing your SELECT statement to only include columns you are interested in, however it won't change the number of logical reads that you are doing and so I suspect it will only have a neglible effect on performance.
If you are only retrieving small numbers of records then an index of LogLevel and an index on CreationDate should do the trick.
UPDATE: SQL server is mostly geared around querying small subsets of massive databases (e.g. returning a single customer record out of a database of millions). Its not really geared up for returning truly large data sets. If the amount of data that you are returning is genuinely large then there is only a certain amount that you will be able to do and so I'd have to ask:
What is it that you are actually trying to achieve?
If you are displaying log messages to a user, then they are only going to be interested in a small subset at a time, and so you might also want to look into efficient methods of paging SQL data - if you are only returning even say 500 or so records at a time it should still be very fast.
If you are trying to do some sort of statistical analysis then you might want to replicate your data into a data store more suited to statistical analysis. (Not sure what however, that isn't my area of expertise)
1: Never use Select *
2: make sure your indexes are correct, and your statistics are up-to-date
3: (Optional) If you find you're not looking at log data past a certain time (in my experience, if it happened more than a week ago, I'm probably not going to need the log for it) set up a job to archive that to some back-up, and then remove unused records. That will keep the table size down reducing the amount of time it takes search the table.
Depending on what kinda of SQL database you're using, you might look into Horizaontal Partitioning. Oftentimes, this can be done entirely on the database side of things so you won't need to change your code.
Do you need all columns? First step should be to select only those you actually need to retrieve.
Another aspect is what you do with the data after it arrives to your application (populate a data set/read it sequentially/?).
There can be some potential for improvement on the side of the processing application.
You should answer yourself these questions:
Do you need to hold all the returned data in memory at once? How much memory do you allocate per row on the retrieving side? How much memory do you need at once? Can you reuse some memory?
A couple of things
do you need all the columns, people usually do SELECT * because they are too lazy to list 5 columns of the 15 that the table has.
Get more RAM, themore RAM you have the more data can live in cache which is 1000 times faster than reading from disk
For me there are two things that you can do,
Partition the table horizontally based on the date column
Use the concept of pre-aggregation.
Pre-aggregation:
In preagg you would have a "logs" table, "logs_temp" table, a "logs_summary" table and a "logs_archive" table. The structure of logs and logs_temp table is identical. The flow of application would be in this way, all logs are logged in the logs table, then every hour a cron job runs that does the following things:
a. Copy the data from the logs table to "logs_temp" table and empty the logs table. This can be done using the Shadow Table trick.
b. Aggregate the logs for that particular hour from the logs_temp table
c. Save the aggregated results in the summary table
d. Copy the records from the logs_temp table to the logs_archive table and then empty the logs_temp table.
This way results are pre-aggregated in the summary table.
Whenever you wish to select the result, you would select it from the summary table.
This way the selects are very fast, because the number of records are far less as the data has been pre-aggregated per hour. You could even increase the threshold from an hour to a day. It all depends on your needs.
Now the inserts would be fast too, because the amount of data is not much in the logs table as it holds the data only for the last hour, so index regeneration on inserts would take very less time as compared to very large data-set hence making the inserts fast.
You can read more about Shadow Table trick here
I employed the pre-aggregation method in a news website built on wordpress. I had to develop a plugin for the news website that would show recently popular (popular during the last 3 days) news items, and there are like 100K hits per day, and this pre-aggregation thing has really helped us a lot. The query time came down from more than 2 secs to under a second. I intend on making the plugin publically available soon.
As per other answers, do not use 'select *' unless you really need all the fields.
logLevel and creationData have indexes
You need a single index with both values, what order you put them in will affect performance, but assuming you have a small number of possible loglevel values (and the data is not skewed) you'll get better performance putting creationData first.
Note that optimally an index will reduce the cost of a query to log(N) i.e. it will still get slower as the number of records increases.
C.
I really hope that by creationData you mean creationDate.
First of all, it is not enough to have indexes on logLevel and creationData. If you have 2 separate indexes, Oracle will only be able to use 1.
What you need is a single index on both fields:
CREATE INDEX i_log_1 ON log (creationData, logLevel);
Note that I put creationData first. This way, if you only put that field in the WHERE clause, it will still be able to use the index. (Filtering on just date seems more likely scenario that on just log level).
Then, make sure the table is populated with data (as much data as you will use in production) and refresh the statistics on the table.
If the table is large (at least few hundred thousand rows), use the following code to refresh the statistics:
DECLARE
l_ownname VARCHAR2(255) := 'owner'; -- Owner (schema) of table to analyze
l_tabname VARCHAR2(255) := 'log'; -- Table to analyze
l_estimate_percent NUMBER(3) := 5; -- Percentage of rows to estimate (NULL means compute)
BEGIN
dbms_stats.gather_table_stats (
ownname => l_ownname ,
tabname => l_tabname,
estimate_percent => l_estimate_percent,
method_opt => 'FOR ALL INDEXED COLUMNS',
cascade => TRUE
);
END;
Otherwise, if the table is small, use
ANALYZE TABLE log COMPUTE STATISTICS FOR ALL INDEXED COLUMNS;
Additionally, if the table grows large, you shoud consider to partition it by range on creationDate column. See these links for the details:
Oracle Documentation: Range Partitioning
OraFAQ: Range partitions
How to Create and Manage Partition Tables in Oracle

Handling 100's of 1,000,000's of rows in T-SQL2005

I have a couple of databases containing simple data which needs to be imported into a new format schema. I've come up with a flexible schema, but it relies on the critical data of the to older DBs to be stored in one table. This table has only a primary key, a foreign key (both int's), a datetime and a decimal field, but adding the count of rows from the two older DBs indicates that the total row count for this new table would be about 200,000,000 rows.
How do I go about dealing with this amount of data? It is data stretching back about 10 years and does need to be available. Fortunately, we don't need to pull out even 1% of it when making queries in the future, but it does all need to be accessible.
I've got ideas based around having multiple tables for year, supplier (of the source data) etc - or even having one database for each year, with the most recent 2 years in one DB (which would also contain the stored procs for managing all this.)
Any and all help, ideas, suggestions very, deeply, much appreciated,
Matt.
Most importantly. consider profiling your queries and measuring where your actual bottlenecks are (try identifying the missing indexes), you might see that you can store everything in a single table, or that buying a few extra hard disks will be enough to get sufficient performance.
Now, for suggestions, have you considered partitioning? You could create partitions per time range, or one partition with the 1% commonly accessed and another with the 99% of the data.
This is roughly equivalent to splitting the tables manually by year or supplier or whatnot, but internally handled by the server.
On the other hand, it might make more sense to actually splitting the tables in 'current' and 'historical'.
Another possible size improvement is using an int (like an epoch) instead of a datetime and provide functions to convert from datetime to int, thus having queries like
SELECT * FROM megaTable WHERE datetime > dateTimeToEpoch('2010-01-23')
This size savings will probably have a cost performance wise if you need to do complex datetime queries. Although on cubes there is the standard technique of storing, instead of an epoch, an int in YYYYMMDD format.
What's the problem with storing this data in a single table? An enterprise-level SQL server like Microsoft SQL 2005 can handle it without much pain.
By the way, do not do tables per year, tables per supplier or other things like this. If you have to store similar set of items, you need one and one only table. Setting multiple tables to store the same type of things will cause problems, like:
Queries would be extremely difficult to write, and performance will be decreased if you have to query from multiple tables.
The database design will be very difficult to understand (especially since it's not something natural to store the same type of items in different places).
You will not be able to easily modify your database (maybe it's not a problem in your case), because instead of changing one table, you would have to change every table.
It would require to automate a bunch of tasks. Let's see you have a table per year. If a new record is inserted on 2011-01-01 00:00:00.001, will a new table be created? Will you check at each insert if you must create a new table? How it would affect performance? Can you test it easily?
If there is a real, visible separation between "recent" and "old" data (for example you have to use daily the data saved the last month only, and you have to keep everything older, but you do not use it), you can build a system with two SQL servers (installed on different machines). The first, highly available server, will serve to handle recent data. The second, less available and optimized for writing, will store everything else. Then, on schedule, a program will move old data from the first one to the second.
With such a small tuple size (2 ints, 1 datetime, 1 decimal) I think you will be fine having a single table with all the results in it. SQL server 2005 does not limit the number of rows in a table.
If you go down this road and run in to performance problems, then it is time to look at alternatives. Until then, I would plow ahead.
EDIT: Assuming you are using DECIMAL(9) or smaller, your total tuple size is 21 bytes which means that you can store the entire table in less than 4 GB of memory. If you have a decent server(8+ GB of memory) and this is the primary memory user, then the table and a secondary index could be stored in memory. This should ensure super fast queries after a slower warm-up time before the cache is populated.