How important is platform independence? - cross-platform

A lot of software frameworks, languages, platforms claim platform independence and boast it as a selling feature. However, I have failed to understand how could this such an important feature. For example, Java is said to be platform independent - but why should I care when I know that my webapp is going to run on only one platform? Is the overhead of making an application platform independent really worthwhile?

For webapps it mostly isn't an issue as they by definition are almost "platform independent". I mean, users of application mostly aren't tied to any particular platform.
For desktop apps it is a question of your potential client base. If you think that you will benefit from multi platform targeting, then it's worth to make your application platform independent, otherwise better stay away from it :)

If you know your app is going to run on only one platform you shouldn't care - you should evaluate the framework using the same criteria as every other framework on your target platform.

This of course depends on the application in question. If you know that the application is going to run on only one platform, then there's obviously no reason to require it to be platform independent. On the other hand, if you are building an application that is supposed to be usable for, say, next 15 years, how can you know that the platform you choose will even exist then? It's hard to predict the future, and therefore making your app platform independent gives you one headache less.
Platform independence doesn't necessarily imply overhead. Rather, it implies good programming practices; if you make your app orthogonal to the platform, then changing the platform is a breeze.
Sometimes it's impossible to avoid platform-dependent function calls, for example because of having to directly communicate with some hardware device at low level. Even then it's possible make the app "almost platform independent". Instead of scattering the platform dependent things everywhere, wrap them all strictly into one class/package/whatever. Then you need to change just that one unit in order to translate your app to another platform.

we develop a Java B2B application that is Unix only, but works on all Unix flavors (where java is available).
the advantage to have a multiplatform application is that our customers sometimes have knowledge in Linux, sometimes in Solaris, sometimes in FreeBSD, ...
this way we can adapt to the customer and not force them to use one specific platform

For example, Java is said to be platform independent - but why should I care when I know that my webapp is going to run on only one platform?
The fact that it's not advantageous to you doesn't mean that it's of no benefit. I'm sure many Java developers enjoy the fact that they don't have to recompile their application for each platform (hence it's a selling point). A web app that makes use of Active X exclusively for certain components will face more road blocks if, in the future, other platforms also become of interest.
Is the overhead of making an application platform independent really worthwhile?
Depends on what you mean by overhead. If it's a good framework, there might be minimal overhead. Of course if other platforms are of no interest to you, then yes, it's an overhead. However, the fact is that unlike a decade or so ago, more platforms are starting to matter these days (at least for web and desktop application). So, the overhead could be worth it in the long run.

If you're developping only server-side, you probably don't need to take care of it at the moment. However, you might be extremely happy down the road to find that you can run your application seamlessly on another OS if the needs arise (for instance, if asked for by a client, or if you have specific performance/fonctionnalities needs).
For a client-side application, platform-independence means a lot less work to be able to ship for Mac and Linux, and yes, that might be worth it.

You almost answer your own question. Platform independence is only important if you want your application to work on multiple platforms. If you don't, then that's one less thing to worry about.
Take OpenOffice or Firefox for example. You can use those on every major platform. That's important to them because they want everyone to be able to use them and have the same experience no matter what their OS is.
If your project is smaller and doesn't really need to be on every platform, then don't worry about it. It's really a judgment call for each program you develop.

but why should I care when I know that
my webapp is going to run on only one
platform?
You shouldn't. If you know that you are going to run on only one platform, platform independence is not very relevant to you.
But you are not equal to all the population of potential users. Other people will want to target pc's in multiple platforms.
It's like having a version in Chinese. If you're going to sell only in English speaking coutries, it's irrelevant. If you're trying to sell in China, it might help.

Theoretically, platform independence helps you avoid the so-called "vendor lock" while at the same time giving you a broader reach and potentially more customers.
In practical terms, you should evaluate your target audience and do good business calculation on whether the profit potential of being able to deliver to multiple platforms outweighs the cost of adopting a platform independent framework. After all, the framework might claim to work the same on all platforms, but you will have to verify that claim. Not to mention that no framework solves all problems for delivering an application, like deployment, configuration, centralized management, updating/upgrading and so on.
Of course, if your product is a server-based and the end user is going to consume it through an HTTP agent, you don't have to worry about it. For the most part and as long as you stay in the [relatively] safe realm of HTML, JavaScript and Flash.

Platform independence is a desirable feature for software vendors because they invest a large amount of money developing a modern, sophisticated application so they don't want to artificially cut out any market segment. They want to sell their baby to as many organizations as possible.
Software vendors try to convince IT departments that platform independence is a good thing because it avoids vendor lock-in. I'm sure that is importance, in theory; however, in practice most IT departments self impose vendor lock-in with their attitudes, usually concerning a particular technology vendor of high prominence.

"Platform independence" can mean different things to different people. For example, is "Windows XP" a different platform than "XP 64", or Vista, or Windows 7? It depends upon whether you write application software or drivers, and on what pre-installed libraries and services you depend on.
In the most general sense, no application can be truly platform-independent - you won't expect to run a web application on the embedded Linux in your toaster, or on a 16-MB Windows 3.11 machine.
But software frameworks that have platform independence as an architectural target are generally better prepared when your platform changes, and in any long-lived project, it will change, if only because hardware will be replaced every 3-5 years, and new hardware often comes with new OS versions.

You always pay for Flexibility.
Always.
Deciding if the cost is worth it (the pay offs can be very high) is entirely dependent on the needs of the individual/company at hand but there is always a cost. Many of these are implicitly assumed, for example:
Most people code to a file system agnostic[1] api rather than one assuming a particular implementation and this choice is correct so often as to be a reasonable default choice in the absence of any particular requirement in that area.
Nonetheless it is sometimes worth revisiting your core assumptions every so often simply to know what they are
[1] at least to the level of saying it's a tree with path separators '/' as opposed to talking ext3, NTFS, ReiserFS, etc...

For a web application that only you are going to use, the only point of being platform-independent is that it makes it easier on you if you change servers down the line.
Of course, languages like Java are used for a lot more than web applications - people write standalone(-ish) desktop programs in them as well, and for those it's a lot more useful to be platform independent. Sun can do the work of making sure Java runs on a whole bunch of different computers, and every Java application developer shares the benefits of that work for free, basically. It's especially beneficial to developers of mobile phone applications (not the iPhone or Android, but good old basic cell phones): writing different code for every different phone out there would be a nightmare. The fact that many phones include a JRE to run applications makes the developers' jobs easier.

One field where cross-platform is an issue even for the desktop applications is software for the scientific community. From my experience, the desktops in the academy are much more heterogeneous than the ones you see at home, offices etc.

Platform independence is not much of an issue when you target a certain platform but it is when you write an application. There are libraries and frameworks out there which solve about any problem you might encounter. Only you can't use them unless they have been written for your target platform.
Which is why it is usually a good thing for a library or framework to be as platform independent as possible because every developer on the planet is a possible client. In the next step, it makes it more simple for application developers to write code which runs on any platform. In the last years, we have seen the user numbers of Mac and Linux grow steadily. So if you can sell to them for little additional cost, why not?

Related

IDS an over-kill for a single-user app?

I have the following dilema: My clients (mom-n-pop pawnshops) have been using my mgmt. system, developed with ISQL, for over 20 years. Throughout these two decades, I have customized the app to each clients desire, or when changes in Laws/Regulations have required it. Most clients are single-user sites. Some have multiple stores, but have never wanted a distributed db, don't trust the reliability or security of the internet or any other type of networking. So, they all use Standard Engines. I've been able to work around some SE limitations and done some clever tricks with ISQL and SE, but sooner or later, new laws may require images of pawnshop customers, merchandise, electronic transmision, etc. and then it will be time to upgrade to IDS, re-write the app in 4GL or change to another RDBMS. The logical and easiest route would be IDS/4GL, however, when I mentioned Linux or Unix-like platforms to my clients, they reacted negatively and demanded a Windows platform, so the easiest solution could be 4Js, Querix, etc.?.. or Access, Visual FoxPro or ???.. anyone have suggestions?
This whole issue probably comes down to a couple of issues that you'll have to deal with.
The first thing is what application programming and development language Are you willing to learn and work with?
The other thing is what kind of Internet capabilities to you want?
So for example while looking at a report do you want to be able to click on a button and have the report converted to a PDF document, and then launch the e-mail client with that PDF attached?
What about after they enter all the information data into the system, perhaps each store would like their own miniature web site in which people in town could go there to check what they've have place of having to phone up the store and ask if they have a $3 used lighter (the labor of phone and checking for these cheap items is MORE than the cost of selling the item – so web really great for this type of scenario).
The other issue is what kind of interface do you want? I assume you currently have some type of green screen or text based interface? Or perhaps over the years you did convert over to a GUI (graphical user interface).
If still green screen (text based) you now you have to sit down and give a considerable amount of effort and time into the layout and how you of screens will work with a graphical based system. I can remember when going from green screens to color, all of a sudden now the choices and effort of having to choose correct colors and layouts for that screen actually increased the workload by quite a bit. And then I went from color test screens to that of a graphical interface, then again all of a sudden now we're presented with a large number of new controls, colors, and in addition to that we have large choices in terms of different fonts and sizes.
And then now with the web, not only do you deal at different kinds a button styles (round, oval, shading, shadows, glow effects), but in addition to all those hover effects and shading effects etc, you now have to get down to some pretty serious issues in terms of what kind of colors (theme) your software will adopt for the whole web site.
This really comes down to how much learning and time you are willing to invest into new tools and how much software you can and will produce for given amount of time and effort.
I quite partial to RAD tools when you get down into the smaller business marketplace. Most of the smaller businesses can not afford rates for a .net developer (it not so much the rate, as the time to build an application). So, using ms-access is a good choice in the smaller business market place. Access is still a good 3 to 5 times many of the other tools in the marketplace. So quote by .net developer to develop something might be 12,000 bucks, and the same thing in Access might be $3000. I mean that small business can not afford to pay you to write unit testing code. This type of extra cost is just not going to happen on the smaller scale projects.
The other big issue you have to deal is what kind of report writing system are you going to build into the system? This is another reason why I like for the smaller business applications is access is because the report writer is really fantastic. Access reports have a whole bunch of abilities to bake connections in from forms and queries and pass filters and parameters into those reports. And, often the forms and queries that you spend time building already can talk to reports with parameters and pass values in a way that again really reduces the workload (development costs).
I think the number one issue that you'll have to address here however is what you're going to do for your web based strategy? You absolutely have to have one. Even if you build the front end part in access, you might still want to use a free edition of SQL server for the back end part. There are several reasons for this, but one reason is then it makes it easy to connect multiple stores up over the Internet.
Another advantage of putting your data in some type of server based system, is now you can set up some type of web server for all the stores to use, and build a tiny little customize system that allows each store to have their products and listings online (but, they use YOUR web server, or one that you paying $15 per month to host all of those customers). This web part could be an optional component that maybe perhaps all customers don't necessarily want. It would work off of the data they have to enter into the system anyway.
One great advantage of adopting these web based systems is not only does it allow these stores to serve their customers far better, but it also opens up the doors for you to convert your software into a monthly fee based system, or at least some part of it such as the optional web hosting part you offer.
When I converted so my longer time applications from green screen mainframe type software into windows desktop based applications it opened up large markets for me. With remote desktop, downloading software, issuing updates from a web site, then these new software systems make all of these nuts and bolts part of delivering software very easy now and especially so for supporting customers in different cities that you've never met face to face.
So, if you talking still primarily single user and one location, Access will reduce your development costs by a lot. It really depends on how complex and rich of an application you are talking about. If the size and scope of the project is beyond one developer, then you talking more about developer scaling (source code control, object development methodology, unit testing, cost and time of setting up a server based database system like SQL server etc). So they're certainly tipping point here when you go beyond that tipping point of cost time in complex city, then I actually don't recommend access. So this all comes down to the right horse for the right course.
Perhaps that the end of the day, it really comes down to what application development system are you willing to invest the time to learn?
Look at Aubit4GL - that is, I believe, available (or can be compiled on) Windows.
Yes, IDS is verging on overkill for a single-user system, but if SE doesn't provide all the features you need, or anticipate needing in the near future, it is a perfectly sensible choice. However, with a modicum of care, it can be set up to be (essentially) completely invisible to the user. And for a non-stressful application like this, the configuration is not complicated. You, as the supplier, would need to be fairly savvy about it. But there are features like silent install such that you could have your own installer run the IDS installer to get the software onto the customer's machine without extra ado. The total size of the system would go up - IDS is a lot bigger on disk than SE is (but you get a lot more functionality). There are also mechanisms to strip out the bigger chunks of code that you won't be using - in all probability. For example, you'd probably use ON-Tape for the backups; you would therefore omit ON-Bar and ISM from what you ship to customers.
IDS is used in embedded systems where there are no users and no managers working with the system. The hardware sits in the cupboard (closet) and works, communicating over the network.
It's good to see folks still getting value out of "old school" Informix Tools. I was never adept at Perform, but the ACE report writer always suited me. We skipped Perform and went straight for FourGen, and I lament that I've never been as productive as I was with FourGen. It had it own kind of elegance from its code generators to it funky, but actually quit powerful, stand alone menu system.
I appreciate the modern UI dynamics, but, damn, is it hard to write applications today. Not just tools, but simply industry requirements et al (such as you may be experiencing in your domain). And the Web is just flat out murder.
I guess part of it is that since most "green screen" apps look the same, it's hard to make one that looks bad! With GUIs and the Web etc., you can't simply get away with a good field order and the labels lining up.
But, alas, such as it is, that is what we have.
I have not used it in, what now, 15 years, but you may also want to look at Alpha 5. It was a pretty powerful, but not overly complicated, database development package, and (apparently) still going strong.
I wouldn't be too afraid of IDS. It runs pretty simply. Out of the box with zero or little tweaking, the DB works and is efficient, and it used to be pretty trivial to install. It was no SE, in that SE's access was tied to the application (using a library) vs an independent server that is IDS. But, operationally, it's really straightforward -- especially for an app like what you're talking about. I appreciate that it might be overkill, but even today, the resource requirements won't necessarily be insane. There's a lot of functionality, of course, and flexibility that you won't use. But frankly, beyond "flat file" DBase style databases, pretty much ALL of the server based SQL databases are very powerful and capable and potentially complicated. But they don't have to be. They can still be used "simply" and easily (well, save for Oracle -- Oracle can't do anything "simply").
As far as exploring other solutions, don't be too afraid of the "OOP" stuff, as most applications, while they leverage OOP libraries, aren't really OOP themselves (they can be, they just typically aren't, they simply don't need to be). The biggest issue with many of the OOPs systems, is they're simply to finely structured. Dealing with events at far too low of a level. While many programs need to access to that fine level of control, most applications, particularly the ones much like yours, do not. So, the extra flexibility simply gets in the way or creates more boiler plate.
That said, you shouldn't be frightened away from them per se, citing lacking of expertise. They can be picked up reasonably quickly. But I would certainly exhaust the more specialized tools (like Alpha 5, or Access, etc.) first to see if they don't offer what you want.
In terms of Visual FoxPro, was and remains a peerless tool (despite flak from people who know little about it). It has a fast, native database engine, built-in SQL and powerful report designer and so on. But you also have to consider that Microsoft support will be dropped for it in 2014, there will never be a 64-bit version, and so on. And the file locking method it uses will be increasingly flaky on future versions of Windows IMO.

Should developers be limited to certain software for development?

Should developers be limited to certain applications for development use?
For most, the answer would be as long as the development team agrees it shouldn't matter.
For a company that is audited for security certifications, is there a method that balances the risk of the company and the flexibility, performance of the developers?
Scope
coding/development software
build system software
3rd party software included with distribution (libraries, utilities)
(Additional) Remaining software on workstation
Possible solutions
Create white-list of approved software where developer must ask for approval for desired software before he/she can use it. Approval would be based on business purpose/security risk.
Create black-list for software. Developers list all software used. Review board periodically goes over list.
Has anyone had to work at a company that restricted developer tools beyond the team setting? How did they handle the situation?
Edit
Cleaned up question. Attempted to make less argumentative.
Limiting the software that developers can use on their work machines is a fantastic idea. This way, all the developers will quit, and then the company won't have to spend as much money on salaries and equipment, resulting in higher profits.
Real answer: NO!!!
No, developers should not be limited in the software they use, because it prevents them from successfully doing their jobs. Think about how much you are paying your team of developers, - do you really want all that money to go spiraling down the drain because you've artificially prevented them from solving problems?
1) Company locks down the pc and treats the developer as competent as a secretary
What happens when the developer needs to do something with administrative permissions? EG: Register a COM object, restart IIS, or install the product they're building? You've just shut them down.
2) Create a white-list of approved software...
This is also impractical due to the sheer amount of software. As a .NET developer I regularly (at least once per week) use upwards of 50 distinct applications, and am constantly evaluating newer upgrades/alternatives for many of these applications. If everything must go through a whitelist, your "approval" staff are going to be utterly swamped by just one or 2 developers, let alone a team of them.
If you take either of these actions, you'll achieve the following:
You'll burn giant piles of time and money as the developers sit on their thumbs waiting for your approval team, or doing things the long slow tedious way because they weren't allowed to install a helpful tool
You'll make yourself the enemy of the development department (not good if you want your devs to actually do what you ask them to do)
You'll depress team morale substantially. Nobody enjoys feeling like they're locked in a cage, and every time they think "This would be finished 5 hours ago if only I could install grep", they'll be unhappy.
A more acceptable answer is to create a blacklist for "problem" software (and websites) such as Pidgin, MSN messenger, etc if you have problems with developers slacking off. Some developers will also rail against this, but many will be OK with it, provided you are sensible in what you blacklist and don't go overboard.
I think developers should have total control on applications that they use as long as they can do their job with them. Developers' productivity is directly related to working environment and no one will like being restricted and everyone likes to use software they like themselves.
Of course there should be some standards in terms of version control, document format, etc., but generally developers should have right to use any programs they want.
And security should be developer's concern - company admins should care about setting up proper firewall to protect against any kinds of attacks.
A better solution would to create a secure independent environment for the developers. An environment that if compromised won't put the rest of the company at risk.
The very nature of the development is to create crafty ingenuous pithy solutions. To achieve this, failures must happen.
Whatever they do, don't take away the Internet in general. Google = Coding Help 101 :)
Or maybe just leave www.stackoverflow.com allowed haha.
I'd say this depends on quite a list of factors.
One is team size. If you have a team of half a dozen developers, this can be negotiated whenever a need for some application pops up. If you have a team of 100 developers, some policy is probably in order.
Another factor is what those developers do. If they compile C code using a proprietary compiler for an embedded platform, things are very different from a team producing distributed web or PC software in a constantly shifting environment.
The software you produce and the target customers are important, too. If you're porting the Linux kernel to some new platform, whether code leaks probably doesn't matter all that bad. OTOH, there are a lot of cases where this is very different.
There are more factors, but in the end it all boils down to two conflicting goals:
You want to give your developers as much freedom as possible, because that stimulates their creativity.
You want to restrict them as much as possible, as this reduces risks. (I'm talking of security risks as well as the risk to ship non-functioning software etc.)
You'll have to find a middle ground that doesn't hurt creativity while allowing enough guarantees to not to hurt the company.
Of course! If you want a repeatable build process, you don't want it contaminated by whatever random bit of junk a programmer happens to use as a tool to generate part of the code. Since whatever application you are building lasts much longer than anyone expects, you also want to ensure that the tools you use to build it are available for roughly the same duration; random tools from the internet don't provide any such gaurantee.
Your team should say "The following tools are allowed for build steps and nothing else" and attempt to make that list short.
Obviously, it shouldn't matter what a programmer looks at to decide what to do, so the entire Internet is just fine as long as its just-look. Nor does it matter if he produces code by magic (or random tool) as long as your team doesn't mind accepting just that tool's output as though it were written by hand.

Reusable knowledge going from Embedded to Desktop

I'm thinking about switching my path "slightly" by going into desktop development (VC++, MFC, C#, etc) after about 8 years within embedded telecom systems development (C, MAKE, Symbian, 100 compilers etc, etc).
My concern however is that my experience within embedded systems maybe doesn't give me much value when going into desktop development. For example that the domain specific problems and environments I've worked with for so long still doesn't give me much to negotiate salaries with since it bares little worth on the desktop.
I think this place might be good for input on this.
So, the Q:
If you disregard the obvious generic experience on programming language level, give an example of something you have learned working with embedded systems that you could reuse when working in a desktop environment.
PS:
I should note that I'm no beginner in the desktop area - since many years back all my hobby projects are focused around desktop development.
Embedded engineers in general tend to be more disciplined when it comes to validating operations and dealing with finite resources.
This can also translate into coming up with an exception handling strategy earlier on.
The quintessential example is checking the return value of malloc. I have seen very few desktop software consistently check it, but it's commonplace in embedded environments.
Discipline of having a clean, well-organized set of source-code is the key skill that translates well to the "desktop experience". -- I've noticed that the embedded projects I've written and picked up are often WAY cleaner than their desktop counterparts.
Many desktop-only developers could benefit from the experience of making a program fit in 128K of FLASH and 32K of SRAM, not to mention communicating meaningfully with a user through only an LED or two and a couple of buttons. Making that a requirement might reduce some of the endemic code bloat in the applications industry. :-)
Even if you don't switch tracks to straight application development, the embedded experience translates well to driver development, as well as to low level utilities and to long running services. All of these are also domains where the disciplines that are nearly second-nature to a successful embedded developer remain valuable.
I was a desktop developer for almost 5yrs before switching to an embedded environment.
I find working on an embedded environment more challenging as we have to deal with memory limitations, slow CPU speed, cross-compilation issues, etc.
Having learned a lot of patience, discipline and low-level intricacies, desktop development should be as easy as a walk in the park.
State machines/event driven programming on embedded systems is not that different from event driven programming on the desktop. The depth of experience you have of these coding techniques on embedded systems, especially telecoms embedded systems, should make you a great desktop programmer.
Similarly, your experience with communications protocols should transfer nicely to the desktop. Most desktop applications have some involvement with the network.

Are embedded developers more conservative than their desktop brethrens? [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 3 years ago.
Improve this question
I've been in the embedded space for a while now, and it seems that most programmers I talk to seem to be doing things pretty much the same way it was done 15 years or more ago: Waterfall(ish) Development, command line tools and a small group uses lint.
Contrast this with the server/desktop environment, where there seems to be lots of activity related to all sorts of facets of programming:
XP, Scrum, Iterative, Lean/Agile
Continuous Integration
Automated Builds
Automated Unit Testing Frameworks
Refactoring tool support
Is it just that the embedded environment makes it more difficult to implement new practices or tools?
Is it that the mindset of embedded programmers steers them away from new tools/concepts?
Is it that management in the typical embedded industry behind the curve compared to IT focused fields?
I do realize that this is a generalization, and some embedded projects do use Scrum, Agile, CI, Automated Builds (in fact I worked at a company that had that in place since the 80s). But my impression is that it is a very small percentage.
We are all used to the fact that our desktop PC crashes once in a while (or at least an application on the desktop suddenly disappears). It's no big deal. The next patch will fix it.
In the embedded space, you are building something which can't be patched. Lives can depend on your device (in a car, an elevator or a medical system). Most devices are installed and then must run unattended for years. So embedded people tend to be very conservative. TCP/IP is often "too modern". They stick to their trusty serial bus with a communication "stack" that is roughly 50 lines of assembler code.
What's worse, you simply don't have the abundance of space on the device which means you can't use one of the latest programming languages which make TDD and automated builds a bliss.
Next, a lot of embedded development environments are proprietary. If your supplier doesn't support it, you won't get it. Linux has started to weaken this in the past years but a whole lot of devices are not powerful enough to run Linux, yet. And even if they were, the CPU power would be used for something else instead of running a fancy OS which comes with source.
So yes, there are powerful forces working in the background to keep the embedded space where it is.
Are embedded developers more conservative than their desktop brethrens?
Yes, because they are more concerned with the consequences of making errors. It’s a big deal to patch an embedded device. Not so much for a desktop app.
Waterfallish development is necessary in the embedded world because you are generally building hardware at the same time as the software. You need to know as soon as possible how much memory, how much processor speed, how big a flash, what if any special hardware is necessary etc...The hardware design can’t complete until you know these answers. Once you decide, that is pretty much it. The lead time for redoing a board is far too long. If you mess up then the software is going to have to work around any short-comings. Not usually an ideal situation.
As for the tools, that is largely based on what the supplier provides and any biases of the developers. On some projects I have used XP Embedded and got pretty much everything that the desktop developer gets.
XP, Scrum, Iterative, Lean/Agile:
Since most of the design is done up front (by necessity), and you usually don’t have working hardware when it is time to code, the quick turn-around processes don’t really provide much benefit.
Continuous Integration/Automated Builds
Nice to have, but not really necessary. What…it takes about 15 seconds to open the IDE and press the compile button.
Automated Unit Testing
No reason why this shouldn't be done, but only part of the code can truly be automatically tested because the other part is either hardware dependent or has some other dependencies like timing. So you can't really tell if the code is working by the automated tests.
Refactoring Tool Support
The vendors of embedded processors product is the processor. They provide the IDE support in order to encourage you to purchase their processor. They couldn't possibly afford to pay for a Visual Studio sized development team in order to add all the bells and whistles to the IDE which isn't even their product.
These some reasons I can think of:
Embedded teams are usually smaller that desktop/Web teams. Code base is smaller.
System testing is much more important than unit testing. The software needs to be tested together with hardware. Automated testing is not possible and can only be applied to a small fraction of the code base.
Embedded engineers have a different skill set than software engineers. They interact with hardware, know how to use an oscilloscope and a logic analyzer. Usually, the difficult part of their job is to find a glitch in the hardware. They do not have the time to adopt modern software methologies.
Embedded programmers are mostly electrical engineers, not computer scientists or software engineers.
They excel in their field of expertise. They bring a slower more methodical approach than most computer programmers. When it comes to programming firmware, electrical engineers know just enough to be dangerous.
Here are some of the things I've noticed electrical engineers doing in C:
All code in ONE single file
Math like variable names: x, y, z
No or missing indentation
No stardard comment headers
No comments at all
Too many comments
In their defense EE's didn't train to be computer programmers, it's not their job. I think software is the hardest part of creating embedded devices. Designing PCBs and choosing components requires skill but pales in comparison to the complexity of 10,000 lines of code.
Embedded programmers also have to deal IDE's that look and behave like the IDE's of the 90's.
MPLAB
AVR Studio
Is it just that the embedded environment makes it more difficult to implement new practices or tools?
It's partly a matter of scale. Software is NOT the product, the product is the product. however, there are thousands of different types of microcontrollers and microprocessors out there, and the most popular thousand have 3-4 different compilers that aren't completely compatible.
So a given tool is only going to be used by a few hundred or thousand engineers.
In windows development, however, there are millions of programmers of many levels - the tools produce software directly which is the product, and so it's going to get more eyeballs, and more money.
Each new product that an engineer puts out might have a different processor.
Is it that the mindset of embedded programmers steers them away from new tools/concepts?
Embedded programmers are generally software or firmware engineers, as opposed to programmers. Engineering implies a certain amount of design, design analysis, and design proof prior to implementation - in other words a ton of work is done before the first line of code is written, and the documentation, ideally, is specific enough that implementation is merely turning pseudocode like documentation into compilable code.
New tools and concepts are needed in the design phase, not the implementation phase. An IDE with intellisense may be nice, but by the time the code is being written it's useless cruft - they already know what they need.
CAD - computer aided design - tools are being developed for firmware engineers that are used in the design phase to develop models and simulations that are directly turned into code. Matlab and simulink are good examples of this. The system as a whole is designed.
In fact, one might wonder why software developers are still writing code while the engineers are making data/program flow charts and state machine diagrams. Why is UML uptake so slow in the application world? It sounds like application developers can use some of the tools in common use among embedded systems engineers...
Is it that management in the typical embedded industry behind the curve compared to IT focused fields?
Actually, it's likely the reverse. When a project starts the engineers have to pick the processor.
The processor manufacturers get less money on older chips, so they pitch the latest and greatest, and they are generally cheaper overall than the chips used in the previous design (either by die shrinks, more integration, etc).
So the design is actually using the latest and greatest chips.
The downside is that the compiler and tools are often immature. They can only build so much on the older tools, and since the target moves with each new processor, they can't focus on a lot of the nice features application programmers might like. Especially since many of those features won't be useful to an embedded engineer.
There are many other factors, some of which are enumerated by other answers, but it's really a different field even though they both involve programming.
-Adam
I would also add a couple of points here:
In general embedded projects tend to be smaller than desktop projects. This decreases the need for very elaborated software processes.
Requirements for embedded project are often precise and better defined. Therefore SCRUM and agile are not so crucial
Finally embedded projects are generally a mix of software and hardware. The software being only a part of the project embedded developpers invest less time in software processes
I agree with much that's been written here:
Old tools without the bells and whistles (far fewer refactorings available due to C/C++'s preprocessor directives, if any at all) (time consuming to choose a unit test framework vs simply using JUnit).
It's true that waterfall feels more efficient. If I'm going to open the hood and get into a hard-to-access place, I'll want to do as much as I can while I'm there, rather than exiting and closing the hood after each task just to open it again. The idea that creating the most important features first allows you the option of shipping when promised instead of going late can also be hard to grasp when you believe nothing is optional, which might be true. IME, though, when the deadline looms something always becomes unnecessary.
Less visibility into the system makes it riskier to revisit existing code to refactor or change functionality. There are often timing issues, which automated tests running on the host using stubs and mocks won't catch. It can be hard for someone who's been bitten by these issues to take a different perspective.
I'll add one more; the language of agile/scrum is in workstation programmer's terms. To an embedded developer who knows just enough C to get the job done, what is a class, object, or method? When the "user" is typically regarded as a physical person clicking and typing, and the product has no person user interface, it's easy to dismiss the idea as Not Applicable. This may change with James Grenning's forthcoming book about TDD in C. I've been reading the beta ebook and it's quite good.
I would say it's more lack of good toolsets. It's really frustrating when you want to use C++ for its compile-time features not present in C (templates, namespaces, object-orientedness, etc) rather than its run-time features (exceptions, virtual functions) -- but the device manufacturers & 3rd parties just give you a C compiler, not C++. This probably results more from market size (hundreds of millions of PCs running Windows, with hundreds of thousands or even millions of developers -- vs. hundreds of thousands of Chip X, with hundreds or low thousands of developers) than from device capability.
edit: w/r/t robustness: there are different markets out there. The car/elevator/aeronautics/medical device market is going to have to be rigorous about getting rid of bugs. Other markets (toys, MP3 players, & other consumer electronics) can be less rigorous, especially if it's possible to upgrade code in the field. ("Oops! We're sorry we deleted your music library! We just fixed that bug, you can grab the latest release at our website at your convenience!")
I'd say different sorts of problem environments.
The biggest problem with the waterfall methodology is that requirements change. In every environment I've been in, there has been at least the likelihood of a requirements change, which means that the successful methodologies are those that keep flexibility as long as possible. Even if the customer has signed off in blood, and stands to forfeit his left hand if he suggests a change, there are changes coming in the future.
In embedded programming, it is possible to nail the requirements down up front. They come from the behavior of the system as a whole, and engineers are good at nailing down system requirements. Nobody's going to come in halfway through and say that the user now wants the pacemaker to deliver syncopated impulses while the recipient is dancing.
Once the requirements are frozen beyond thawing, which never happens in software designed for human use, waterfall is a very efficient methodology. The team proceeds from well-specified requirements to overall design, then detailed design, then coding, verifying all the way that the stages are done correctly. Then it's time to debug the code (since it's never perfect when written), and final tests to make sure the code meets the requirements.
I would also posit that some fields are inherently conservative. The transportation industry for example, where trains and planes may have life spans of 30 years or so. Customers tend to require tried and true practices, probably derived from IEEE. Waterfall is what customers know, waterfall is what customers demand.

How to avoid short-lifespan enterprise applications?

A while ago another question referred to the (possibly urban tale) statistic that
... the average lifespan of software is about 3 years
At the time I came up with the following reasons (and I'm sure there are more possibly better ones):
A new major system (ERP, CRM, etc.) is implemented and it has an "integrated" module to replace the old app.
Same, but no integrated app - but the existing app is not adaptable (the people left, technology has changed, current IT policies have changed, users don't like the existing app.)
The company you acquired the basic app from, to customize it for your needs has disappeared.
Or you don't get along well with them any more.
The technology for the existing app is "obsolete" (according to the framework vendor/Microsoft/consultant/industry expert/new IT manager who has management's ear.)
"We're phasing out (Windows 95/Windows 98/Windows 2000/Windows XP/NT) and we need matching technology in our apps".
"We've learned a lot from (App Version n) and we'll do a lot better the second/third/fourth/n+1th time."
Job justification for developers/IT manager/Division VP/consulting company.
The users hate it.
We've merged/acquired a competitor/been acquired by a competitor and theirs is better.
Some of these are unavoidable (e.g. your company gets bought), but overall this is surely smething that needs to be avoided. Does your organization intentionally fight this syndrome? What effective strategies would you recommend?
That's why an application needs to be easy to expand, and you should be able to easily add-in all the buzzwords.
If you have a solid base code, most of the buzzwords are related to the UI (Vista Controls, Ajax, .net, ASP.net 3.5)...
You could be running COBOL in the back-end ( I wouldn't).
A new major system is implemented - There's nothing you can do.
current IT policies have changed, - The app should be adaptable.
users don't like/hate the existing app - why? cosmetic changes in the UI can fix this most of the time.
The company you acquired the basic app from, to customize it for your needs has disappeared. - I wouldn't do that, I'd prefer to write it myself.
The technology for the existing app is "obsolete" (according to the framework vendor/Microsoft/consultant/industry expert/new IT manager who has management's ear.) - same as the above, if the back-end is solid, you should follow these in the front-end.
"We're phasing out (Windows 95/Windows 98/Windows 2000/Windows XP/NT) and we need matching technology in our apps". - a simple compatibility test and minor UI elements solve this.
I'll also say that this is different when you compare in-house to commercial apps, if you're doing an in-house app, change guarantees your job (if you know what you're doing). If you're doing a commercial app, change is an opportunity to make more money, new features would get you upgrades from existing clients and new clients who are looking for the buzzwords, these buzzword could become your advantage when compared to a competitor.
The average lifetime of software I write at the moment is probably a few days. (I write a lot of scripts, so I might be an aberration. ;-) But the core system I work with is probably 15 to 20 years old now. The underlying OS is about 30 years old. There is nothing inherently wrong with either old or young software. In fact, software ages best when it's possible to adapt it to new uses.
Having layers of abstraction between functional parts make it easier to replace functionality in a system. For instance, we've gone through several different tape libraries on our system and now we are considering going to disk archives in the future. Since the "archive" portion of our system sits behind an abstraction layer, we can replace it fairly easily without replacing the rest of the system.
When possible, it's also best to use standard parts. That way, if you run into some limitation, it's likely others will have the same problems and more likely someone will come up with a fix.
Continuous improvement - add useful features at regular intervals
No show-stopping bugs in new versions - testing, testing, testing...
be nice to your clients and treat them with respect (most users really don't want to change their ERPs every three years so if you have a good realtions with them they'll be on your side)
Stay current with new technologies and integrate them in your application when needed
When gathering requirements and someone says "Situation X will always be the case, no exceptions", make it configurable. It will always change, no exceptions.
Most companies don't make it for 5 years. Their software implementations wouldn't be expected to last as long.