ORM Support for Handling Deadlocks - orm

Do you know of any ORM tool that offers deadlock recovery? I know deadlocks are a bad thing but sometimes any system will suffer from it given the right amount of load. In Sql Server, the deadlock message says "Rerun the transaction" so I would suspect that rerunning a deadlock statement is a desirable feature on ORM's.

I don't know of any special ORM tool support for automatically rerunning transactions that failed because of deadlocks. However I don't think that a ORM makes dealing with locking/deadlocking issues very different. Firstly, you should analyze the root cause for your deadlocks, then redesign your transactions and queries in a way that deadlocks are avoided or at least reduced. There are lots of options for improvement, like choosing the right isolation level for (parts) of your transactions, using lock hints etc. This depends much more on your database system then on your ORM. Of course it helps if your ORM allows you to use stored procedures for some fine-tuned command etc.
If this doesn't help to avoid deadlocks completely, or you don't have the time to implement and test the real fix now, of course you could simply place a try/catch around your save/commit/persist or whatever call, check catched exceptions if they indicate that the failed transaction is a "deadlock victim", and then simply recall save/commit/persist after a few seconds sleeping. Waiting a few seconds is a good idea since deadlocks are often an indication that there is a temporary peak of transactions competing for the same resources, and rerunning the same transaction quickly again and again would probably make things even worse.
For the same reason you probably would wont to make sure that you only try once to rerun the same transaction.
In a real world scenario we once implemented this kind of workaround, and about 80% of the "deadlock victims" succeeded on the second go. But I strongly recommend to digg deeper to fix the actual reason for the deadlocking, because these problems usually increase exponentially with the number of users. Hope that helps.

Deadlocks are to be expected, and SQL Server seems to be worse off in this front than other database servers. First, you should try to minimize your deadlocks. Try using the SQL Server Profiler to figure out why its happening and what you can do about it. Next, configure your ORM to not read after making an update in the same transaction, if possible. Finally, after you've done that, if you happen to use Spring and Hibernate together, you can put in an interceptor to watch for this situation. Extend MethodInterceptor and place it in your Spring bean under interceptorNames. When the interceptor is run, use invocation.proceed() to execute the transaction. Catch any exceptions, and define a number of times you want to retry.

An o/r mapper can't detect this, as the deadlock is always occuring inside the DBMS, which could be caused by locks set by other threads or other apps even.
To be sure a piece of code doesn't create a deadlock, always use these rules:
- do fetching outside the transaction. So first fetch, then perform processing then perform DML statements like insert, delete and update
- every action inside a method or series of methods which contain / work with a transaction have to use the same connection to the database. This is required because for example write locks are ignored by statements executed over the same connection (as that same connection set the locks ;)).
Often, deadlocks occur because either code fetches data inside a transaction which causes a NEW connection to be opened (which has to wait for locks) or uses different connections for the statements in a transaction.

I had a quick look (no doubt you have too) and couldn't find anything suggesting that hibernate at least offers this. This is probably because ORMs consider this outside of the scope of the problem they are trying to solve.
If you are having issues with deadlocks certainly follow some of the suggestions posted here to try and resolve them. After that you just need to make sure all your database access code gets wrapped with something which can detect a deadlock and retry the transaction.

One system I worked on was based on “commands” that were then committed to the database when the user pressed save, it worked like this:
While(true)
start a database transaction
Foreach command to process
read data the command need into objects
update the object by calling the command.run method
EndForeach
Save the objects to the database
If not deadlock
commit the database transaction
we are done
Else
abort the database transaction
log deadlock and try again
EndIf
EndWhile
You may be able to do something like with any ORM; we used an in house data access system, as ORM were too new at the time.
We run the commands outside of a transaction while the user was interacting with the system. Then rerun them as above (when you use did a "save") to cope with changes other people have made. As we already had a good ideal of the rows the command would change, we could even use locking hints or “select for update” to take out all the write locks we needed at the start of the transaction. (We shorted the set of rows to be updated to reduce the number of deadlocks even more)

Related

SQLite concurrent connections issue

I am working on a VB.NET application.
As per the nature of the application, One module has to monitor database (SQLite DB) each second. This Monitoring is done by simple select statement which run to check data against some condition.
Other Modules performs a select,Insert and Update statements on same SQLite DB.
on SQLite concurrent select statements are working fine, but I'm having hard time here to find out, why it is not allowing Inset and Update.
I understand it's a file based lock, but is there anyway to get it done?
each module, in fact statement opens and close the connection to DB.
I've restricted user to run single statement at a time by GUI design.
any Help will be appreciated.
If your database file is not on a network, you could allow a certain amount of read/write concurrency by enabling WAL mode.
But perhaps you should use only a single connection and do your own synchronization for all DB accesses.
You can use some locking mechanism to make sure the database works in a multithreading situation. Since your application is a read intensive one according to what you said, you can consider using a ReaderWriterLock or ReaderWriterLockSlim. (refer to here and here for more details)
If you have only one database, then creating just one instance of the lock is OK; if you have more than one database, each of them can be assigned a lock. Every time you do some read or write, enter the lock (by EnterReadLock() for ReaderWriterLockSlim, or by AcquireReaderLock() for ReaderWriterLock) before you do something, and after you're done exit the lock. Note that you can place the exit of the lock in a finally clause lest you forget to release it.
The strategy above is being used in our production applications. It's not so good as to use a single thread in your case because you have to take performance into account.

Is it enough to test a stored-procedure safely just by running it in a transaction?

I have a sp called MoveSomeItems which gets some rows from tableA from Foo Db. and moves them to tableA in Bar Db.
I want to test this sp if it really moves the items.
Is it enough to run this sp in a transaction and select the rows to see if they are moved OR I should approach it in a different way?
This depends upon what the impact of it all going wrong is? What impact would having incorrect data in the destination table be, will it kill someone, simply annoy them or is it unlikely anyone will notice? Will it be easy to fix?
There are risks associated with the approach you have given. For instance:
If the database is very busy, it is possible to cause excessive locking or even a deadlock with a transaction that may cause other transactions to fail. Setting the TRANSACTION ISOLATION LEVEL to READ UNCOMITTED and the DEADLOCK PRIORITY to LOW will help to minimise this but not eliminate it entirely.
There is the possibility that other transactions may be running in READ UNCOMMITED isolation mode. In which case they will see the results of the insert temporarily until the roll back is issued.
It is worth noting that if the procedure you are testing calls COMMIT TRANSACTION inside it you might not get the result you want when you call the ROLLBACK.
You might push the database or log to run out of disk space.
You might use up all the available CPU, Memory, Disk IO, Network or some other capacity limit.
Finally, I suspect this is not a complete list. The point I’m trying to make is that it could go wrong in strange ways.
If you have a personal development database that is fully backed up then you wouldn't even need the transaction, simply do a restore after the event. The transaction may well save you some time though. This is the safest solution.
If you are using a shared development database your approach might be acceptable enough, but I would still do a backup just in case, especially if you are already on bad terms with the team.
If you are using a live database it may still be acceptable if the system as a whole is not that critical and can sustain some downtime while you repair things. Again do a backup.
If the database you are looking at is controlling a process that is safety critical or some other mission critical function, don't even go there you may lose the no claims on your liability insurance or worse. In this instance it is best to restore a backup onto a test server and test there thus creating my first scenario. But be warned there are lots of issues that have to be considered when doing this. For instance it may be illegal to use personal information in a test system. Also there may be dependencies on other systems that will need to be mocked out to ensure you don't affect them, for example don't connect a test system to a live email server.
If I havea complex stored proc that I want to be able to test and rollback, I add an input parameter(always as the last parameter), #debug with a default value of 0 (so you don't need to specify it when you are running on prod).
Then I write code at the end to test if the parameter = 1 and if so I run any select queries to shwo me what data I want to see and then send the program to the catch block using raiseerror (Never write multiple transactions without a try catch block) and have it rollback.
This way you can easily check your results on dev and automatically rollback.

how to replicate and retry deadlocks in nhibernate

Looking through my logs, I can see that my app is vulnerable to deadlocks. They are occurring in many parts of my application.
1) Is there way to replicate this issue. ie: I have only seen this in logs.
2) What is the best/simplest way to retry if the transaction is locked
3) If I wrapped the call in a try/catch. What would the exception type be.
There is a lot written about the issue. I concluded the best option is to try and shorten the transactions as much as possible. Should I change the isolation levels?
Finding Deadlocks
deadlocks are very hard to find. If you know why they occur, you may reproduce it in integration tests. In real environments you can use Profiler to observe dead locks. It shows a graph which displays how the deadlock is formed.
Retry
You should actually throw away the transaction and start again. The NHibernate session is out of synch after any database exception.
We have a delay before restarting to avoid more stress to the database. It waits for a certain time containing a random number, to avoid that the parallel transactions are synchronizing again.
Avoiding Deadlocks
Reducing Lock Time
If you are using Sql Server, it is very vulnerable to dead locks because of its pessimistic locking mechanism (in contrast to Oracle databases). The newer Snapshot isolation level is something similar to what Oracle is doing and may fix the problem to some degree, but I never used until now so I can't say much about it.
NHibernate fixes the problem as far as possible by caching changes to persistent data and store it at the end of a transaction. But there are some limits and some ways to break it.
Using identity ("auto numbers") as primary keys is probably the most famous mistake. It forces NH to insert entities when they are put into the session which produces a lock of the whole table (in SQL Server).
More complicated to fix is the flushing problem. NH needs to flush changes before executing queries, to ensure consistency. You can get around this by setting FlushMode to Never, which may cause consistency problems, so only do it when you exactly know what you do. The best solution is to only use Get or Load or navigate to properties of a root entity instead of performing queries in the middle of a transaction.
By doing all this, NH is able to wait for any Insert, Update and Delete command to the database until the end of the transaction. The reduces lock time a lot and therefore it also reduces the risk of dead locks.
General Rules To Avoid Deadlock
The general rules to avoid deadlocks also apply when using NHibernate. Most important: lock resources in a certain order, lock resources not on by one but all at the beginning. The latter is contradictory to what I said above to reduce lock time. It would mean that you lock resources at the beginning of a transaction to make other transactions wait until it is finished. This may reduce deadlocks but also reduces parallel execution.
This is the solution that we opted to use in legacy system where we could not fix the root cause of these deadlocks as it would mean rewriting a lot of existing and poorly documented code. The system was using DataSets and ADO.NET classes, so if you intent to use NHibernate I fear you would have to research its internals and/or develop your own extension or for if existing functionality is not available for that.
1) If the code is prone to deadlocks they should start appearing at sufficient database load. You need many simultaneous connections working with the same tables using the problematic procedures.
It is difficult to reproduce deadlocks in the exact places you want, but if you want general deadlocks for your retry procedure testing do simultaneous reads/inserts into same tables from 10+ threads with differing access order (e.g. table A then B in some of them, table B and then A in others) with small delays and you get one soon.
2) You need to retry the entire code fragment that works with the transaction and retry data initialization too. Meaning, if you are filling datasets within transaction you have to clear them at the beginning of retryable code block.
3) It is .Numer=1205 of SqlException. In general, you can also retry on timeout and network errors:
switch (sqlEx.Number)
{
case 1205:
{
DebugLog("DEADLOCK!");
canRetry = true;
break;
}
case -2:
case -2147217871:
{
DebugLog("TIMEOUT!");
canRetry = true;
break;
}
case 11:
{
DebugLog("NETWORK ERROR!");
canRetry = true;
break;
}
default:
{
DebugLog(string.Format("SQL ERROR: {0}", sqlEx.Number));
break;
}
}
In my experience when retrying on deadlock it is best to discard the connection from the pool with SqlConnection.ClearPool(connection) because it might not be reset properly for the next time.

Recover from SQL batch-abort errors inside a transaction? Alternative?

I'm looking for a way to continue execution of a transaction despite errors while inserting low-priority data. It seems like real nested transaction could be a solution, but they aren't supported by SQL Server 2005/2008. Another solution would be to have logic to decide if an error is critical or not, but it would seem that's not possible either.
Here's more detail on my scenario:
Data is periodicaly inserted in the database using ADO.NET/C#, and while some of it is vital, some could also be missing without problems. When the inserts are done, some computations are made on the data. (Both vital and non-vital) This whole process is inside a transaction so everything remains in synch.
Currently, transaction save points are used, and partial rollbacks are made on exceptions which occur during non-vital inserts. However, this doesn't work for "batch-abort" errors, which automaticly rollback the entire transaction. I understand some errors are critical, but things like failed casts are considered by SQL Server to be batch-abort errors. (Info on batch errors) I'm trying to prevent these errors from bringing down the whole insert if they occur on low priority data.
If what I'm describing isn't possible, I'm willing to consider any alternative way to achieve data integrity but allow the failure of the non-vital inserts.
Thanks for your help.
Unfortunately, can't be done as you describe (full support for nested transactions would be key here). Couple things I can think of that have been used to get around this in the past:
Best option would probably be to separate the commands into important/non-important commands that could be executed distinctly, naturally this would require that they not be order-dependent on each other
Could also use a messaging based approach (see Service Broker) where you would execute the primary commands inline and push the non-primary commands onto a queue for execution later/separately. The push to the queue would be transactional within the batch, but the execution of the command when you pop off the queue would be separate. This too would require they not be order-dependent on each other.
If order-dependent, you could use the messaging approach for everything, which would ensure order and could have separate messages per operation, then grouping them together (via conversation groups) would allow you to pull them off the queue in order as well and use separate transactions for each 'type' of operation (i.e. primary vs. non-primary). This would require some special coding on your part if all the grouped messages must be a single autonomous operation, but could be done.
I hesitate to even mention this option, because it is a terrible option, but for full disclosure I suppose you could consider it at your discretion if you think it fits (but it is definitely not an architecture that would apply to almost any scenario). You could use xp_cmdshell to call out to the command line and execute sqlcmd/osql for the non-critical tasks - this sqlcmd execution would be in a separate transaction from the module you are executing from, and simply ignoring the xp_cmdshell failure should allow the primary batch to continue.
Those are some ideas...
Can you do your import into a temporary location, using transactions only for the important parts. Once the temp location loaded, having absorbed any non-critical errors, you can copy the data into its final destination in a single transaction. Depends on the nature the work you are doing, but potentially a viable option.

How can I get dead lock in this situation?

In my client application I have a method like this (in practice it's more complex, but I've left the main part):
public void btnUpdate_Click(...)
{
...
dataAdapter.Update(...);
...
dataAdapter.Fill(...); // here I got exception one time
}
The exception I found in logs says "Deadlock found when trying to get lock; try restarting transaction". I met this exception only time, so it wasn't repeated.
As I understand, DataAdapter.Fill() method executes only select query. I don't make an explicit transaction and I have autocommit enabled.
So how can I get dead lock on a simple select query which is not a part of bigger transaction?
As I understand, to get a dead lock, two transactions should wait for each other. How is that possible with a single select not inside a transaction? Maybe it's a bug in MySql?
Thank you in advance.
You are right it takes two transactions to make a deadlock. That is to say, No statement or statements within a single transaction can deadlock with other statements within the same transaction.
But it only take one transaction to notice a report of a deadlock. How do you know that the transaction you are seeing the deadlock reported in is the only transaction being executed in the database? Isn't there other activity going on in this database?
Also. your statement "I don't make an explicit transaction", and "... which is not a part of bigger transaction" implies that you do not understand that every SQL statement executed is always in an implicit transaction, even if you do not explicitly start one.
Most databases have reporting mechanisms specifically designed to track, report and/or log instances of deadlocks for diagnostic purposes. In SQL server there is a trace flag that causes a log entry with much detail about each deadlock that occurs, including details about each of the two transactions involved, like what sql statements were being executed, what objects in the database were being locked, and why the lock could not be obtained. I'd guess mySQL has similar disgnostic tool. Find out what it is and turn it on so that the next time this occurs you can look and find out exactly what happened.
You can deadlock a simple SELECT against other statements, like an UPDATE. On my blog I have an example explaining a deadlock between two well tunned statements: Read/Write deadlock. While the example is SQL Server specific, the principle is generic. I don't have enough knowledge of MySQL to claim this is necessarily the case or not, specially in the light of various engines MySQL can deploy, but none the less a simple SELECT can be the victim of a deadlock.
I haven't looked into how MySQL transaction works, but this is based on how MSSQL transactions work:
If you are not using a transaction, each query has a transaction by itself. Otherwise you would get a mess every time an update failed in the middle.
The reason for the deadlock might be lock escalation. The database tries to lock as little as possible for each query, so it starts out by locking only the single rows affected. When most of the rows in a page is locked by the query it might decide that escalating the lock into locking the entire page would be better, which may have the side effect of locking some rows not otherwise affected by the query.
If a select query and an update query are trying to escalate locks on the same table, they may cause a deadlock eventhough only a single table is involved.
I agree that in this particular issue this is unlikely to be the issue but this is supplemental to the other answers in terms of limiting their scope, recorded for posterity in case someone finds it useful.
MySQL can in rare cases have single statements periodically deadlock against themselves. This seems to happen particularly on bulk inserts and the issues are almost certainly a deadlock between different threads relating to the operation. I would expect bulk updates to have the same problem. In the past when faced with this sort of issue I have generally just cut down on the number of rows being inserted (or updated) in a single statement. You won't usually get a deadlock when trying to obtain the lock in this case but other messages.
A colleague of mine and I were discussing similar problems in MS SQL Server (so this is not unique to MySQL!) and he pointed out that the solution there is to tell the server not to parallelize the insert or update. The problems here are spinlock-related deadlocks, not logical lock deadlocks in the RDBMS.