Fault (radiation) tolerant soft core? - hardware

Is there a certification or some authority that decides if a soft core is fault tolerant or not?
Another question. I've seen that LEON3-FT is radiation tolerant only when implemented on the RTAX Actel FPGA. Is that right?
Excuse me but I'm confused about it because somebody speaks about LEON3-FT (fault tolerant) for space applications, where it is more correct to say radiation tolerant?
And, the last question...is there somebody that knows another soft core "radiation tolerant" (for space application)?

The Actel is not fault tolerant. It is resistant to radiation in the first place. This is because of the way it is design.
Xilinx has some documentation on radiation link text.
I have done satellite FPGA work and don't know of any certification body. Some discussion of the general issue is at link text.
A fault tolerant design will be a start. However since the configuration memory can be corrupted in a SRAM-based design (Xilinx, Altera, Lattice), you have to worry about that too.

This might be useful. There is also a presentation, summarizing the results. These are test done for CERN. They need radiation tolerant ASICs and tested some FPGAs. I think they didn't focus on certification, they just testet how fast they could re-configure a faulty FPGA.

When you say fault tolerant, it means in case a fault occurs due to radiation ion hit, the processor will have the ability to correct it's bit . This is due to the way the processors architecture is designed.
Such kind of fault tolerant IPs can be used with Space grade SRAM based devices & will yet perform somewhat satisfactorily, but i think it will slow down the processor due to fault correction it will have to do due to SRAM FPGA features. Whereas the soft errors will be much much lesser if you use the above IP with a Radiation Hardened FPGA.
The difference between Radiation Hardened & Tolerant : Hardened is no error upto certian rad level, whereas Tolerant will cause certain amount error for certain amt of radiation
Actel can provide data upton request, but provided if you are in USA. ITAR Restrictions apply for all Space Grade devices &
Vendors may ask you to disclose info about yourself before you expect a reply about Radiation tolerant / hardened device.
CERN has used Actel devices (FUSION Family) to correct a Xilinx devices's configuration.

Related

is it recommended to use SPI flash to run code instead internal flash due to memory limitation of internal flash?

We used the LPC546xx family microcontroller in our project, currently, at the initial stage, we are finalizing the software and hardware requirements. The basic firmware size (which contains RTOS, 3rd party stack, library, etc...) currently is 480 KB. Now once full application developed than the size will exceed the internal flash size (512KB) and plus we needed storage which can hold firmware update image separately.
So we planned to use SPI flash (S25LP064A-JBLE, http://www.issi.com/WW/pdf/IS25LP032-064-128.pdf, serial flash memory) of 4MB\8MB to boot and run firmware.
is it recommended to run code from SPI flash? how can I map external flash memory directly to CPU memory space? Can anyone give an example that contains this memory mapping(linker script etc..) or demo application in which LPC546xx uses SPI FLASH?
Generally speaking it's not recommended, or differently put: the closer to the CPU the better. Both S25LP064A and LPC546xx however support XIP, so it is viable.
This is not a trivial issue as many aspects are affecting. I.e. issue is best avoided and should really have been ironed out in the planning stage. Embedded Systems are more about compromising than anything and making the right/better choices takes skill end experience.
Same question with replies on the NXP forum: link
512K of NVRAM is huge. There are almost certainly room for optimisations even if 3'rd party libraries are used.
On a related note this discussion concerning XIP should give valuable insight: link.
I would strongly encourage use of file-systems if not done already, for which external storage is much better suited. The further from the computational unit, the more relevant. That's not XIP and the penalty is copy-to-RAM either way you do it. I.e. performance will be slower. But in my experience, the need for speed has often-times not been thoroughly considered and at least partially greatly overestimated.
Regarding your mentioning of RTOS and FW-upgrade:
Unless it's a poor RTOS there's file-system awareness built in. Especially for FW upgrading (Note: you'll need room for 3 images, factory reset included), unless already supported by the SoC-vendor by some other means (OTA), it will make life much easier and less risky. If there's no FS-awareness, it can be added.
FW upgrade requires a lot of extra storage. More if simpler. Simpler is however also safer which especially for FW upgrades matters hugely. In the simplest case (binary flat image), you'll need at least twice the amount of memory you're already consuming.
All-in-all: I think the direction you're going is viable and depending on the actual situation perhaps your only choice.

Is it possible to have CAN on Arduino without extra hardware?

I would like to have Arduino operating in a CAN network. Does the software that provides OSI model network layer exist for Arduino? I would imagine detecting the HI/LOW levels with GPIO/ADC and sending the signal to the network with DAC. It would be nice to have that without any extra hardware attached. I don't mind to have a terminating resistor required by the CAN network though.
By Arduino I mean any of them. My intention is to keep the development environmen.
If such a software does not exist, is there any technical obstacle for that, like limited flash size (again, I don't mean particular board with certain Atmega chip).
You can write a bit banging CAN driver, but it has many limitations.
First it's the timeing, it's hard to achieve the bit timing and also the arbitration.
You will be able to get 10kb or perhaps even 50kb but that consumes a huge amount of your cpu time.
And the code itself is a pain.
You have to calculate the CRC on the fly (easy) but to implement the collision detection and all the timing parameters is not easy.
Once, I done this for a company, but it was a realy bad idea.
Better buy a chip for 1 Euro and be happy.
There are several CAN Bus Shield boards available (e.g: this, and this), and that would be a far better solution. It is not just a matter of the controller chip, the bus interface, line drivers, and power all need to be considered. If you have the resources and skills you can of course create your own board or bread-board for less.
Even if you bit-bang it via GPIO you would need some hardware mods I believe to handle bus contention detection, and it would be very slow and may not interoperate well with "real" CAN controllers on the bus.
If your aim is to communicate between devices of your own design rather than off-the shelf CAN devices, then you don't need CAN for that, and something proprietary will suffice, and a UART will perform faster that a bit-banged CAN implementation.
I don't think, that such software exists. CAN bus is more complex, than for example I2C. Basically you would have to implement functionality of both CAN controller and CAN transceiver. See this thread for more details (in German).
Alternatively you could use one of the CAN shields. Another option were to use BeagleBone with suitable CAN cape.
Also take a look at AVR-CAN.

Is hardware impossible to debug without software?

Disclaimer: I am (mostly) hardware ignorant. This is probably my problem. However I find it hard to accept that it is not possible to debug hardware so therefore I just wanted to get some second opinions.
We have an issue. Where certain actions (swapping Usb devices in and out at run-time) can blow either the Usb hub or chip on our Usb board (it's custom hardware). It's a fuzzy problem (it appears that the degree of "blownness" can vary a bit) and the problem manifests itself in intermittent fashions with various symptoms that are very difficult to reliably reproduce (typically random corruption of packets).
This results in difficulty in ascertaining if a newly reported problem is due to this hardware fault or is actually a bug in the software. We have since implemented protection on these devices but if an unprotected device is used with a protected device it has a possibility of then tainting the (now protected) device. One of the ports is also not protected meaning that someone could still "kill off" a unit that should be safe by accidentally using the wrong port.
The upshot of this is that it is impossible to tell which of our devices suffer this issue without completely replacing ALL the hardware (we've bitten the bullet for most of our production hardware but there is still a lot of dev and QA hardware out there with this issue).
I would imagine that it could be possible, given a piece of hardware that one could use some kind of hardware diagnostics tools to determine whether the kit is faulty or not. Am I living in a dream world? My hardware department tell me that the only tests that can prove the fault would be software tests... but as I have stated the symptoms are very difficult to reproduce. As I'm not that experienced with hardware I don't know if this is the only answer or not. I therefore ask the world.
Built In Test Equipment is used for performing a Built In Test
BITE for BIT
(No bytes involved.)
It is completely, utterly normal for military/aerospace equipment to have extra hardware to test itself with.
The original IBM PC hard a surprising quantity of test hardware built in.
In the case of your equipment, a test device and some statistical analysis would do the trick.
This could be done in hardware in a dongle, but frankly would be easier to with some software.
Use two back-to-back USB to RS232 serial converters to make a USB loopback device.
Send lots of data , checksum packets and measure error rates.
I'm assuming your errors occur on the in->out as well as the out-<in side.
Really, your hardware guys need to look at some application notes; USB IS hotplug-safe IF done according to the book.
There is a cool example out on the net of opto-coupling a USB chip's connection to the board it's onto prevent this sort of thing. The USB chip is connected to the host, powered from the host, and the interface to the USB chip is SPI, which is opto-coupled back to the rest of the board.
As for you, the chips are failing partially. Injured devices may work fine for months then die. An electro-static discharge ("a static zap") can do the same thing that you describe. A device can be injured by shocks too small for you to feel.
The wires and features in semiconductors are microscopic, and easily damaged by stray electricity.
If the hardware design is mostly right probably the liekly cause of the problems you've been experiancing is ESD when the devices are handled to plug/unplug. Your devie has it's own power supply and it's ground voltage floats relative to the other end of the USB cable, until it is connected.
Hope this helps.
No it's not.
A lot of hardware manufacturers begin with hardware testing. Inputs and outputs (IO) is just a matter of evaluating where circuit flow is going. Consider the abstraction that both software and hardware deal in boolean operations.
Hardware is just a little less human readable!
When it comes down to it, hardware's line of communication is (at its most basic) HIGH and LOW through various pins.
I have a brother (in the automobile tech industry) who has used and electrometer to measure voltage on pins to isolate where the problem is (I'm not really smart enough in that field to go into more detail on how he does it).
Your problem is that the only known symptom is so hard to detect (packet corruption in USB stream), that you're going to need software (at some level) to detect it.
If you can work out why packets are getting corrupted (bad voltages?) then maybe you could detect that with hardware?
Otherwise you need some kind of robust testing kit, and software to send/receive lots of packets to look for corruption?
No. That's what oscilloscopes and logic analyzers are for. Also there is more specialized equipment such as USB testers.
The simpler the hardware is, and the more access you have to the signals, the more likely you are to be able to diagnose it in a 'purely hardware' kind of way. For example if you had a simple parallel port card plugged into a PCI slot, it would be relatively straightforward to put a bus analyzer on the PCI bus, and the adapter's output, and see if the outputs did the right thing when the card was addressed. But note you'd still need to attempt to access that card from the PCI bus, which would mean either (A) some kind of PCI bus simulation, which would be one heck of a big pile of test hardware, or (B) a cheap off-the-shelf PC with a few lines of test code.
But then at the other end of the spectrum, suppose you're dealing with a large FPGA. You can get one heck of a lot of logic into an FPGA, and you won't necessarily have access to all the test points you'd like. I've personally encountered a bug with a serial port embedded in an FPGA, where a race condition with the shift register preload register would occasionally corrupt a byte. Hypothetically the VHDL could have been reworked to bring out test points, and a pile of scopes and analyzers gathered, but from a management standpoint it was much more cost effective to try to tease the problem out with software. Under normal usage, the bug in question would have turned up once every blue moon. We iterated through speculation about the conditions that would elicit the bug, and refining the test code, until we had test software that could reproduce the bug 2-3 times a minute. At that point we could actually provide clues to the VHDL guys that helped them fix the problem quickly.
Long story short, inside of a week a hardware bug was smoked out via software, whereas starting with the same information and going 'hardware only' would likely have not been any faster, and would have required a lot of expensive test equipment. So, yeah, you probably can do it without software, but as usual it's a trade-off, and you have to find the right balance point between the amount of software vs hardware for the job.

Send and receive data trough the power network

I'm not interested in a hardware solution, I want to know about software that may "read" modulated signal received trough the power supply - some sort of a low-level driver that would access the power signal in a convenient place and demodulate it.
Is there a way to receive signal from the computer's power supply? I'm interested in an API or library that would allow the computer to be seen as a node in a Power Line Communication network and receive data directly through the power cable, without the need for a converter. Is there any active research in this field?
Edit:
There is software that reads monitors and displays internal component voltages - DC voltage after being converted and filtered by the power supply - now I need is a method of data encoding that would be invariant to conversion and filtering, the original signal embedded in AC being present in some form within the converted DC signal.
This is not possible, as described in the question. Yes, with extra hardware you can do it. No, with the standard hardware in a PC, you could not.
As others have noted, among other problems, the only information you can get from a generic PC is a bit of voltage info for the CPU. It's not going to give a picture of the AC signal, nor any signal modulated on top of it. You'll be watching a few highly regulated DC signals deep inside the computer, probably converted at a relatively low rate too. Almost by definition, if you could see external information on any of those signals, your machine is already suffering a hardware failure and chances are the CPU will be crashing soon...
*blink* No...
Edit: I mean, there's the possibility to use the powerlines as network cables, but only with special adapters. And it is just designed for home networks.
Edit2: You can't read something from the power supply of a computer...it's not designed for that. You would have to create your own component/adapter for this.
Am I mis-reading this? Wouldnt this be a pure hardware solution?
This is highly improbable without adding some hardware.
You see, the power supplies in a regular PC are switching power supplies which effectively decouple the AC input from the supplied DC voltage needed on the PC side. The AC side just basically provides power that fuels the high-speed power switching circuitry.
Also, a DC signal, by definition, doesn't provide a signal per se: it is a "static" power level (and yes the power level does vary a bit in the time domain but not as an easy to leverage function).
Yes there can be an AD (Analog to Digital) monitoring chip that can be used on the PC side to read the voltage of the DC component supplied to the motherboard etc., but that doesn't mean there is still a signal that can be harvested: the original power line "signal" might have been through enough filters that there isn't a "signal" left to be processed.
Lastly, one needs to consider that power supplies design varies from company to company; this fact will undoubtedly affect any possible design of a communication solution.
what you describe is possible but unfortunately, you need an adapter to convert the signal running on the powerlines to sensible network traffic.
the power line acts as a physical medium, thus is at the lowest level f the OSI stack. conversion from electrical signal to sensible network traffic requires a hardware adapter, same for your an ethernet adapter. your computer is unable to understand this traffic since its power supply was not build to transmit those informations. but note that you can easily find an adapter and it will works the same as an ethernet adapter, that is be accessible through the standard BSD socket library.
This is ENTIRELY possible, although you would need to either buy or build some hardware to make it happen. In addition, the software solution would be very, very complex.
The computer's power supply would be out of the picture for the most part. You need to read data straight from the wall with as little extraneous noise as possible. From the electrical engineering perspective, this is a very thoroughly covered topic. In the end, all you're really doing is an analog to digital conversion, and the rest keeps your circuit from being fried.
The software solution would basically be eliminating random noise, and looking for embedded signals. The math behind analog signal analysis is very complex, and you can spend a few semesters in college covering the topic, and the rest of your career trying to master it. If you're good at it, there's a cushy job for you on wallstreet predicting the stock market.
And that only covers reading incoming signals. Transmitting is a whole 'nother sport.
Now, it also sounds like you might be interested in a hack. That is...
You could buy a
commercial-off-the-shelf power-line
Ethernet adapter and tear it apart.
They have two prongs that plug into
a standard wall outlet. You could
remove these and wire them to the
INSIDE of a power supply.
To do that, you'd have to tear apart a power
supply as well, which is incredibly
dangerous and I hereby warn you and
anyone else to NEVER attempt this.
The entire Ethernet adapter could be
tucked into the power supply and you
could basically have an Ethernet
port on the surface of your power
supply (either inside or outside the
computer).
Simply wire that to a
standard Ethernet adapter and voila
(!), you have nothing but a power
cable connecting your computer to
the wall outlet, AND you magically have
Ethernet!
Note that there also has to be another power-line
Ethernet adapter somewhere else for
you to establish a network and make the whole project useful.
How can you read modulated data from the power supply, you are talking about voltage and ohms and apart from a possible electrical shock which would be just shocking :) There are specialized electrical plugs with ethernet jacks in them that you can use.
I just hazard a guess that this is totally transparent as per Adrien Plisson's answer, i.e. you would have all of the OSI layer and is no different. You can write code to read from the sockets.
AFAIK no company that produces this electrical plug would ever open up the API for competition reasons, it is still in early stages as adoption of that is low because obviously it is very expensive (120 euro here in my country for a pair of 'em), as it does not deliver the quoted speed, say 100Mbps power plug, may get maybe 85Mbps due to varying situations and phenomena with power (think surges, brown outs, interference).
My 2cents.
Hope this helps,
Best regards,
Tom.

Determining failing sectors on portable flash memory

I'm trying to write a program that will detect signs of failure for portable flash memory devices (thumb drives, etc).
I have seen tools in the past that are able to detect failing sectors and other kinds of trouble on conventional mechanical hard drives, but I fear that flash memory does not have the same kind of predictable low-level access to the hardware due to the internal workings of the storage. Things like wear-leveling and other block-remapping techniques (to skip over 'dead' sectors?) lead me to believe that determining if a flash drive is failing will be difficult at best, if not impossible (short of having constant read failures and device unmounts).
Flash drives at their end-of-life should be easy to detect (constant CRC discrepancies during reads and all-out failure). But what about drives that might be failing early? Are there any tell-tale signs like slower throughput speeds that might indicate a flash drive is going to fail much sooner than normal?
Along the lines of detecting potentially bad blocks, I had considered attempting random reads/writes to a file close to or exactly the size of the entire volume, but even then is it possible that the drive might report sizes under its maximum capacity to account for 'dead' blocks?
In short, is there any way to circumvent or at least detect (algorithmically or otherwise) the use of block-remapping or other life extension techniques for flash memory?
Let me end this question by expressing my uncertainty as to whether or not this belongs on serverfault.com . This is definitely a hardware-related question, but I also desire a software solution - preferably one that I can program myself.
If this question is misplaced, I will be happy to migrate it to serverfault - but I do need a programming solution. Please let me know if you need clarification :)
Thanks!
It's interesting if badblocks can help in this case
AFAIK, Wear leveling happens at the firmware level. The hardware does not know about the bad block, till such time the firmware detects one.
And there is no known way to find this bad sectors before hand. BTW, I guess, it is not bad sectors, but bad blocks. Once a sector is bad, the whole block is marked as bad ...