How much more inefficient are text (blobs) than varchar/nvarchar's? - sql

We're doing a lot of large, but straightforward forms for a fairly big project (about 600 users using it throughout the day - that's big for me at least ;-) ).
The forms have a lot of question/answer type sections, so it's natural for some people to type a sentence, while others type a novel. How beneficial would it be to put a character limit on some of these fields really?
(Please include references or citations, if necessary/possible - Thanks!)

If you have no limitations on the data size, then why worry. This doesn't sound like a mission critical project, even with 600 users and several thousand records. Use CLOB/BLOB and be done with it. I have doubts as to whether you would see any major gains in limiting sizes and risking data loss. That said, you should layout such boundaries before implementation.
Usually varchar is best for storing values that you wish to use logically and perform "whole value" comparisons against. Text is for unstructured data. If your project is a survey result with unstructured text, use CLOB/BLOB
Semi-Reference: I work with hundreds of thousands of call center records sometimes where we use a CLOB to store the dialog between employees and customers.

I say, focus on the needs of the users and only worry about database performance issues when/if those issues arise. Ask yourself "will my users benefit if I limit the amount of data they can enter".
I keep a great gapingvoid cartoon on my wall that says "it's not what the software does. it's what the user does".

You don't mention which sql server you are using
If you are using MySql there are definite advantages in speed to using fixed length fields to keep the table in static mode, however if you have any variable width fields the table will switch to dynamic and you lose the benefit of specifying the length of the field.
http://dev.mysql.com/doc/refman/5.0/en/static-format.html
http://dev.mysql.com/doc/refman/5.0/en/dynamic-format.html
Microsoft SQL Server has similar performance gains when you use fixed length columns. With fixed length columns the server knows exactly what the offset and length of the data in the row is. With variable length columns the server knows the offset but has to store the actual length of the data as a preceding 2byte counter. This has a couple of implications that are discussed in this interesting article that discusses performance as a function of disk space and the advantages of variable length columns.
If you are using SQL Server 2005 or newer you can take advantage of varchar(max). This column type has the same 2GB storage capacity of BLOBs but the data is stored in 8K chunks with the table data pages instead of in a separate store. So you get the large size advantage, only use 8K in your pages at a time, quick access for the DB engine, and the same query semantics that work with other column types work with varchar(max).
In the end specifying a max length on a variable column mainly lets you constrain the growth size of your database. Once you use variable length columns you lose the advantage of fixed size rows and varchar(max) will perform the same as varchar(10) when holding the same amount of data.

blob and text / ntext are stored outside of the row context, and only a reference stored to the object, resulting in a smaller row size, which will improve performance on clustered indexes.
However because text / ntext are not stored with the row data retrival takes longer, and these fields cannot be used in any comparison statements.

from: http://www.making-the-web.com/2008/03/24/saving-bytes-efficient-data-storage-mysql-part-1/
There are a few variations of the TEXT and BLOB types which affect size; they are:
Type - Maximum Length -Storage
TINYBLOB, TINYTEXT 255 Length+1 bytes
BLOB, TEXT 65535 Length+2 bytes
MEDIUMBLOB, MEDIUMTEXT 16777215 Length+3 bytes
LONGBLOB, LONGTEXT 4294967295 Length+4 bytes

Related

SQL Query Performance with an nvarchar(500) where the MAX(LEN(column)) < 30 [duplicate]

I've read up on this on MSDN forums and here and I'm still not clear. I think this is correct: Varchar(max) will be stored as a text datatype, so that has drawbacks. So lets say your field will reliably be under 8000 characters. Like a BusinessName field in my database table. In reality, a business name will probably always be under (pulling a number outta my hat) 500 characters. It seems like plenty of varchar fields that I run across fall well under the 8k character count.
So should I make that field a varchar(500) instead of varchar(8000)? From what I understand of SQL there's no difference between those two. So, to make life easy, I'd want to define all my varchar fields as varchar(8000). Does that have any drawbacks?
Related: Size of varchar columns (I didn't feel like this one answered my question).
One example where this can make a difference is that it can prevent a performance optimization that avoids adding row versioning information to tables with after triggers.
This is covered by Paul White here
The actual size of the data stored is immaterial – it is the potential
size that matters.
Similarly if using memory optimised tables since 2016 it has been possible to use LOB columns or combinations of column widths that could potentially exceed the inrow limit but with a penalty.
(Max) columns are always stored off-row. For other columns, if the data row size in the table definition can exceed 8,060 bytes, SQL Server pushes largest variable-length column(s) off-row. Again, it does not depend on amount of the data you store there.
This can have a large negative effect on memory consumption and performance
Another case where over declaring column widths can make a big difference is if the table will ever be processed using SSIS. The memory allocated for variable length (non BLOB) columns is fixed for each row in an execution tree and is per the columns' declared maximum length which can lead to inefficient usage of memory buffers (example). Whilst the SSIS package developer can declare a smaller column size than the source this analysis is best done up front and enforced there.
Back in the SQL Server engine itself a similar case is that when calculating the memory grant to allocate for SORT operations SQL Server assumes that varchar(x) columns will on average consume x/2 bytes.
If most of your varchar columns are fuller than that this can lead to the sort operations spilling to tempdb.
In your case if your varchar columns are declared as 8000 bytes but actually have contents much less than that your query will be allocated memory that it doesn't require which is obviously inefficient and can lead to waits for memory grants.
This is covered in Part 2 of SQL Workshops Webcast 1 downloadable from here or see below.
use tempdb;
CREATE TABLE T(
id INT IDENTITY(1,1) PRIMARY KEY,
number int,
name8000 VARCHAR(8000),
name500 VARCHAR(500))
INSERT INTO T
(number,name8000,name500)
SELECT number, name, name /*<--Same contents in both cols*/
FROM master..spt_values
SELECT id,name500
FROM T
ORDER BY number
SELECT id,name8000
FROM T
ORDER BY number
From a processing standpoint, it will not make a difference to use varchar(8000) vs varchar(500). It's more of a "good practice" kind of thing to define a maximum length that a field should hold and make your varchar that length. It's something that can be used to assist with data validation. For instance, making a state abbreviation be 2 characters or a postal/zip code as 5 or 9 characters. This used to be a more important distinction for when your data interacted with other systems or user interfaces where field length was critical (e.g. a mainframe flat file dataset), but nowadays I think it's more habit than anything else.
There are some disadvantages to large columns that are a bit less obvious and might catch you a little later:
All columns you use in an INDEX - must not exceed 900 bytes
All the columns in an ORDER BY clause may not exceed 8060 bytes. This is a bit difficult to grasp since this only applies to some columns. See SQL 2008 R2 Row size limit exceeded for details)
If the total row size exceeds 8060 bytes, you get a "page spill" for that row. This might affect performance (A page is an allocation unit in SQLServer and is fixed at 8000 bytes+some overhead. Exceeding this will not be severe, but it's noticable and you should try to avoid it if you easily can)
Many other internal datastructures, buffers and last-not-least your own varaibles and table-variables all need to mirror these sizes. With excessive sizes, excessive memory allocation can affect performance
As a general rule, try to be conservative with the column width. If it becomes a problem, you can easily expand it to fit the needs. If you notice memory issues later, shrinking a wide column later may become impossible without losing data and you won't know where to begin.
In your example of the business names, think about where you get to display them. Is there really space for 500 characters?? If not, there is little point in storing them as such. http://en.wikipedia.org/wiki/List_of_companies_of_the_United_States lists some company names and the max is about 50 characters. So I'd use 100 for the column max. Maybe more like 80.
Apart from best practices (BBlake's answer)
You get warnings about maximum row size (8060) bytes and index width (900 bytes) with DDL
DML will die if you exceed these limits
ANSI PADDING ON is the default so you could end up storing a wholeload of whitespace
Ideally you'd want to go smaller than that, down to a reasonably sized length (500 isn't reasonably sized) and make sure the client validation catches when the data is going to be too large and send a useful error.
While the varchar isn't actually going to reserve space in the database for the unused space, I recall versions of SQL Server having a snit about database rows being wider than some number of bytes (do not recall the exact count) and actually throwing out whatever data didn't fit. A certain number of those bytes were reserved for things internal to SQL Server.

Is altering the Page Size in SQL Server the best option for handling "Wide" Tables?

I have a multiple tables in my application that are both very wide and very tall. The width comes from sometimes 10-20 columns with a variety of datatypes varchar/nvarchar as well as char/bigint/int/decimal. My understanding is that the default page size in SQL is 8k, but can be manually changed. Also, that varchar/nvarchar columns are except from this restriction and they are often(always?) moved to a separate location, a process called Row_Overflow. Evenso, MS documentation states that Row-Overflowed data will degrade performance. "querying and performing other select operations, such as sorts or joins on large records that contain row-overflow data slows processing time, because these records are processed synchronously instead of asynchronously"
They recommend moving large columns into joinable metadata tables. "This can then be queried in an asynchronous JOIN operation".
My question is, is it worth enlarging the page size to accomodate the wide columns, and are there other performance problems thatd come up? If I didnt do that and instead partitioned the table into 1 or more metadata tables, and the tables got "big" like in the 100MM records range, wouldnt joining the partitioned tables far outweigh the benefits? Also, if the SQL Server is on a single core machine (or on SQL Azure) my understanding is that parallelism is disabled, so would that also eliminate the benefit of moving the tables intro partitions given that the join would no longer be asynchronous? Any other strategies that you'd recommend?
EDIT: Per the great comments below and some additional reading (that I shouldve done originally), you cannot manually alter SQL Server page size. Also, related SO post: How do we change the page size of SQL Server?. Additional great answer there from #remus-rusanu
You cannot change the page size.
varchar(x) and (MAX) are moved off-row when necessary - that is, there isn't enough space on the page itself. If you have lots of large values it may indeed be more effective to move them into other tables and then join them onto the base table - especially if you're not always querying for that data.
There is no concept of synchronously and asynchronously reading that off-row data. When you execute a query, it's run synchronously. You may have parallelization but that's a completely different thing, and it's not affected in this case.
Edit: To give you more practical advice you'll need to show us your schema and some realistic data characteristics.
My understanding is that the default page size in SQL is 8k, but can
be manually changed
The 'large pages' settings refers to memory allocations, not to change the database page size. See SQL Server and Large Pages Explained. I'm afraid your understanding is a little off.
As a general non-specific advice, for wide fixed length columns the best strategy is to deploy row-compression. For nvarchar, Unicode compression can help a lot. For specific advice, you need to measure. What is the exact performance problem you encountered? How did you measured? Did you used a methodology like Waits and Queues to identify the bottlenecks and you are positive that row size and off-row storage is an issue? It seems to me that you used the other 'methodology'...
you can't change the default 8k page size
varchar and nvarchar are treated like any other field, unless the are (max) which means they will be stored a little bit different because they can extend the size of a page, which you cant do with another datatype, also because it is not possible
For example, if you try to execute this statement:
create table test_varchars(
a varchar(8000),
b varchar(8001),
c nvarchar(4000),
d nvarchar(4001)
)
Column a and c are fine because both on them are max 8000 bytes in length.
But, you would get the following errors on columns b and d:
The size (8001) given to the column 'b' exceeds the maximum allowed for any data type (8000).
The size (4001) given to the parameter 'd' exceeds the maximum allowed (4000).
because both of them exceed the 8000 bytes limit. (Remember that the n in front of varchar or char means unicode and occupies double of space)

is there an advantage to varchar(500) over varchar(8000)?

I've read up on this on MSDN forums and here and I'm still not clear. I think this is correct: Varchar(max) will be stored as a text datatype, so that has drawbacks. So lets say your field will reliably be under 8000 characters. Like a BusinessName field in my database table. In reality, a business name will probably always be under (pulling a number outta my hat) 500 characters. It seems like plenty of varchar fields that I run across fall well under the 8k character count.
So should I make that field a varchar(500) instead of varchar(8000)? From what I understand of SQL there's no difference between those two. So, to make life easy, I'd want to define all my varchar fields as varchar(8000). Does that have any drawbacks?
Related: Size of varchar columns (I didn't feel like this one answered my question).
One example where this can make a difference is that it can prevent a performance optimization that avoids adding row versioning information to tables with after triggers.
This is covered by Paul White here
The actual size of the data stored is immaterial – it is the potential
size that matters.
Similarly if using memory optimised tables since 2016 it has been possible to use LOB columns or combinations of column widths that could potentially exceed the inrow limit but with a penalty.
(Max) columns are always stored off-row. For other columns, if the data row size in the table definition can exceed 8,060 bytes, SQL Server pushes largest variable-length column(s) off-row. Again, it does not depend on amount of the data you store there.
This can have a large negative effect on memory consumption and performance
Another case where over declaring column widths can make a big difference is if the table will ever be processed using SSIS. The memory allocated for variable length (non BLOB) columns is fixed for each row in an execution tree and is per the columns' declared maximum length which can lead to inefficient usage of memory buffers (example). Whilst the SSIS package developer can declare a smaller column size than the source this analysis is best done up front and enforced there.
Back in the SQL Server engine itself a similar case is that when calculating the memory grant to allocate for SORT operations SQL Server assumes that varchar(x) columns will on average consume x/2 bytes.
If most of your varchar columns are fuller than that this can lead to the sort operations spilling to tempdb.
In your case if your varchar columns are declared as 8000 bytes but actually have contents much less than that your query will be allocated memory that it doesn't require which is obviously inefficient and can lead to waits for memory grants.
This is covered in Part 2 of SQL Workshops Webcast 1 downloadable from here or see below.
use tempdb;
CREATE TABLE T(
id INT IDENTITY(1,1) PRIMARY KEY,
number int,
name8000 VARCHAR(8000),
name500 VARCHAR(500))
INSERT INTO T
(number,name8000,name500)
SELECT number, name, name /*<--Same contents in both cols*/
FROM master..spt_values
SELECT id,name500
FROM T
ORDER BY number
SELECT id,name8000
FROM T
ORDER BY number
From a processing standpoint, it will not make a difference to use varchar(8000) vs varchar(500). It's more of a "good practice" kind of thing to define a maximum length that a field should hold and make your varchar that length. It's something that can be used to assist with data validation. For instance, making a state abbreviation be 2 characters or a postal/zip code as 5 or 9 characters. This used to be a more important distinction for when your data interacted with other systems or user interfaces where field length was critical (e.g. a mainframe flat file dataset), but nowadays I think it's more habit than anything else.
There are some disadvantages to large columns that are a bit less obvious and might catch you a little later:
All columns you use in an INDEX - must not exceed 900 bytes
All the columns in an ORDER BY clause may not exceed 8060 bytes. This is a bit difficult to grasp since this only applies to some columns. See SQL 2008 R2 Row size limit exceeded for details)
If the total row size exceeds 8060 bytes, you get a "page spill" for that row. This might affect performance (A page is an allocation unit in SQLServer and is fixed at 8000 bytes+some overhead. Exceeding this will not be severe, but it's noticable and you should try to avoid it if you easily can)
Many other internal datastructures, buffers and last-not-least your own varaibles and table-variables all need to mirror these sizes. With excessive sizes, excessive memory allocation can affect performance
As a general rule, try to be conservative with the column width. If it becomes a problem, you can easily expand it to fit the needs. If you notice memory issues later, shrinking a wide column later may become impossible without losing data and you won't know where to begin.
In your example of the business names, think about where you get to display them. Is there really space for 500 characters?? If not, there is little point in storing them as such. http://en.wikipedia.org/wiki/List_of_companies_of_the_United_States lists some company names and the max is about 50 characters. So I'd use 100 for the column max. Maybe more like 80.
Apart from best practices (BBlake's answer)
You get warnings about maximum row size (8060) bytes and index width (900 bytes) with DDL
DML will die if you exceed these limits
ANSI PADDING ON is the default so you could end up storing a wholeload of whitespace
Ideally you'd want to go smaller than that, down to a reasonably sized length (500 isn't reasonably sized) and make sure the client validation catches when the data is going to be too large and send a useful error.
While the varchar isn't actually going to reserve space in the database for the unused space, I recall versions of SQL Server having a snit about database rows being wider than some number of bytes (do not recall the exact count) and actually throwing out whatever data didn't fit. A certain number of those bytes were reserved for things internal to SQL Server.

Is there any harm choosing a large value for varchar in MySQL?

I'm about to add a new column to my table with 500,000 existing rows. Is there any harm in choosing a large value for the varchar? How exactly are varchars allocated for existing rows? Does it take up a lot of disk space? How about memory effects during run time?
I'm looking for MySQL specific behavior details not general software design advises.
There's no harm in choosing a large value for a varchar field. Only the actual data will be stored, and MySQL doesn't allocate the full specified length for each record. It stores the actual length of the data along with the field, so it doesn't need to store any padding or allocate unused memory.
Depends on what you're doing. See the relevant documentation page for some of the details:
http://dev.mysql.com/doc/refman/5.0/en/char.html
The penalty in disk space isn't really any different than what you have for e.g. TEXT types, and from a performance perspective it MAY actually be faster.
The primary problem is the maximum row size. Note that the exact implications of this differ between storage engines. Consult the MySQL docs for your storage engine of choice for maximum row size information.
I should also add that there can be performance benefits to minimizing row size, but it really depends on your workload, indexing, and just how big the rows are, whether or not it will be meaningful for you.
MySQL VARCHAR fields store the contents, plus 2 bytes for length. So empty VARCHAR fields will use up space to mark their lengths.
Also, if this is the only VARCHAR field in your table, and your storage engine is MyISAM, it would force dynamic row format which may yield a performance hit (testing will confirm).
http://dev.mysql.com/doc/refman/5.0/en/column-count-limit.html
http://dev.mysql.com/doc/refman/5.0/en/dynamic-format.html

Does varchar result in performance hit due to data fragmentation?

How are varchar columns handled internally by a database engine?
For a column defined as char(100), the DBMS allocates 100 contiguous bytes on the disk. However, for a column defined as varchar(100), that presumably isn't the case, since the whole point of varchar is to not allocate any more space than required to store the actual data value stored in the column. So, when a user updates a database row containing an empty varchar(100) column to a value consisting of 80 characters for instance, where does the space for that 80 characters get allocated from?
It seems that varchar columns must result in a fair amount of fragmentation of the actual database rows, at least in scenarios where column values are initially inserted as blank or NULL, and then updated later with actual values. Does this fragmentation result in degraded performance on database queries, as opposed to using char type values, where the space for the columns stored in the rows is allocated contiguously? Obviously using varchar results in less disk space than using char, but is there a performance hit when optimizing for query performance, especially for columns whose values are frequently updated after the initial insert?
You make a lot of assumptions in your question that aren't necessarily true.
The type of the a column in any DBMS tells you nothing at all about the nature of the storage of that data unless the documentation clearly tells you how the data is stored. IF that's not stated, you don't know how it is stored and the DBMS is free to change the storage mechanism from release to release.
In fact some databases store CHAR fields internally as VARCHAR, while others make a decision about how to the store the column based on the declared size of the column. Some database store VARCHAR with the other columns, some with BLOB data, and some implement other storage, Some databases always rewrite the entire row when a column is updated, others don't. Some pad VARCHARs to allow for limited future updating without relocating the storage.
The DBMS is responsible for figuring out how to store the data and return it to you in a speedy and consistent fashion. It always amazes me how many people to try out think the database, generally in advance of detecting any performance problem.
The data structures used inside a database engine is far more complex than you are giving it credit for! Yes, there are issues of fragmentation and issues where updating a varchar with a large value can cause a performance hit, however its difficult to explain /understand what the implications of those issues are without a fuller understanding of the datastructures involved.
For MS Sql server you might want to start with understanding pages - the fundamental unit of storage (see http://msdn.microsoft.com/en-us/library/ms190969.aspx)
In terms of the performance implications of fixes vs variable storage types on performance there are a number of points to consider:
Using variable length columns can improve performance as it allows more rows to fit on a single page, meaning fewer reads
Using variable length columns requires special offset values, and the maintenance of these values requires a slight overhead, however this extra overhead is generally neglible.
Another potential cost is the cost of increasing the size of a column when the page containing that row is nearly full
As you can see, the situation is rather complex - generally speaking however you can trust the database engine to be pretty good at dealing with variable data types and they should be the data type of choice when there may be a significant variance of the length of data held in a column.
At this point I'm also going to recommend the excellent book "Microsoft Sql Server 2008 Internals" for some more insight into how complex things like this really get!
The answer will depend on the specific DBMS. For Oracle, it is certainly possible to end up with fragmentation in the form of "chained rows", and that incurs a performance penalty. However, you can mitigate against that by pre-allocating some empty space in the table blocks to allow for some expansion due to updates. However, CHAR columns will typically make the table much bigger, which has its own impact on performance. CHAR also has other issues such as blank-padded comparisons which mean that, in Oracle, use of the CHAR datatype is almost never a good idea.
Your question is too general because different database engines will have different behavior. If you really need to know this, I suggest that you set up a benchmark to write a large number of records and time it. You would want enough records to take at least an hour to write.
As you suggested, it would be interesting to see what happens if you write insert all the records with an empty string ("") and then update them to have 100 characters that are reasonably random, not just 100 Xs.
If you try this with SQLITE and see no significant difference, then I think it unlikely that the larger database servers, with all the analysis and tuning that goes on, would be worse than SQLITE.
This is going to be completely database specific.
I do know that in Oracle, the database will reserve a certain percentage of each block for future updates (The PCTFREE parameter). For example, if PCTFREE is set to 25%, then a block will only be used for new data until it is 75% full. By doing that, room is left for rows to grow. If the row grows such that the 25% reserved space is completely used up, then you do end up with chained rows and a performance penalty. If you find that a table has a large number of chained rows, you can tune the PCTFREE for that table. If you have a table which will never have any updates at all, a PCTFREE of zero would make sense
In SQL Server varchar (except varchar(MAX)) is generally stored together with the rest of the row's data (on the same page if the row's data is < 8KB and on the same extent if it is < 64KB. Only the large data types such as TEXT, NTEXT, IMAGE, VARHCAR(MAX), NVARHCAR(MAX), XML and VARBINARY(MAX) are stored seperately.