I am writing a Python tool that needs several figures open at the same time, each one with its own widgets (sliders, for the most part). I don't need any interactions across the figures here. Each figure is independent of the other ones, with its own plot and its own sliders affecting only itself.
I can get Matplotlib sliders working fine on a single figure, but I can't get them to work on multiple figures concurrently. Only the sliders of the LAST figure to open are working. The other ones are unresponsive.
I recreated my problem with the simple code below, starting from the example in the Matplotlib.Slider doc. If I run it as-is, only the sliders for the second figure (amplitude) works. The other doesn't. If I invert the two function calls at the bottom, it's the other way around.
I've had no luck googling solutions or pointers. Any help would be much appreciated.
I'm on Python 3.9.12, btw. I can upload a requirements file if someone tries and cannot reproduce the issue. Thank you!
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.widgets import Slider
# The parametrized function to be plotted
def f(time, amplitude, frequency):
return amplitude * np.sin(2 * np.pi * frequency * time)
# Define initial parameters
init_amplitude = 5
init_frequency = 3
t = np.linspace(0, 1, 1000)
def create_first_fig():
# Create the figure and the line that we will manipulate
fig1, ax1 = plt.subplots()
line1, = ax1.plot(t, f(t, init_amplitude, init_frequency), lw=2, color='b')
ax1.title.set_text('First plot - interactive frequency')
ax1.set_xlabel('Time [s]')
# adjust the main plot to make room for the sliders
fig1.subplots_adjust(left=0.25, bottom=0.25)
# Make a horizontal slider to control the frequency.
axfreq = fig1.add_axes([0.25, 0.1, 0.65, 0.03])
freq_slider = Slider(
ax=axfreq,
label='Frequency [Hz]',
valmin=0,
valmax=30,
valinit=init_frequency,
)
# register the update function with each slider
freq_slider.on_changed(lambda val: update_first_fig(val, fig1, line1))
plt.draw()
plt.pause(0.1)
return fig1
# The function to be called anytime a slider's value changes
def update_first_fig(val, fig, line):
line.set_ydata(f(t, init_amplitude, val))
fig.canvas.draw_idle()
plt.pause(0.1)
def create_second_fig():
# Create the figure and the line that we will manipulate
fig2, ax2 = plt.subplots()
line2, = ax2.plot(t, f(t, init_amplitude, init_frequency), lw=2, color='r')
ax2.title.set_text('Second plot - interactive amplitude')
ax2.set_xlabel('Time [s]')
# adjust the main plot to make room for the sliders
fig2.subplots_adjust(left=0.25, bottom=0.25)
# Make a vertically oriented slider to control the amplitude
axamp = fig2.add_axes([0.1, 0.25, 0.0225, 0.63])
amp_slider = Slider(
ax=axamp,
label="Amplitude",
valmin=0,
valmax=10,
valinit=init_amplitude,
orientation="vertical",
)
# register the update function with each slider
amp_slider.on_changed(lambda val: update_second_fig(val, fig2, line2))
plt.draw()
plt.pause(0.1)
return fig2
# The function to be called anytime a slider's value changes
def update_second_fig(val, fig, line):
line.set_ydata(f(t, val, init_frequency))
fig.canvas.draw_idle()
plt.pause(0.1)
figure1 = create_first_fig()
figure2 = create_second_fig()
plt.show()
I would expect the slider in both figures to work the way it does when I only open the corresponding figure. So far it's only the slider in the figure that's created last that works.
Edit in case someone else looks at this: see Yulia V's answer below. It works perfectly, including in my initial application. The site doesn't let me upvote it because I am too new on here, but it's a perfect solution to my problem. Thanks Yulia V!
You need to save the references to sliders as variables to make it work. No idea why, but this is how matplotlib works.
Specifically, in your functions, you need to have
return freq_slider, fig1
...
return amp_slider, fig2
instead of
return fig1
...
return fig2
and in the main script,
freq_slider, figure1 = create_first_fig()
amp_slider, figure2 = create_second_fig()
instead of
figure1 = create_first_fig()
figure2 = create_second_fig()
Just to illustrate my comment below #Yulia V's answer, it works too if we store the sliders as an attribute of the figure instead of returning them:
def create_first_fig():
...
fig1._slider = freq_slider
...
return fig1
def create_first_fig():
...
fig2._slider = amp_slider
...
return fig2
...
figure1 = create_first_fig()
figure2 = create_second_fig()
Related
I am trying to make a slider that can adjust the x and y coordinates of the legend anchor, but this does not seem to be updating on the plot. I keep getting the message in console "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument", each time the slider value is updated.
Here is the code, taken from this example in the matplotlib docs
from cProfile import label
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.widgets import Slider, Button
# The parametrized function to be plotted
def f(t, amplitude, frequency):
return amplitude * np.sin(2 * np.pi * frequency * t)
t = np.linspace(0, 1, 1000)
# Define initial parameters
init_amplitude = 5
init_frequency = 3
# Create the figure and the line that we will manipulate
fig, ax = plt.subplots()
line, = ax.plot(t, f(t, init_amplitude, init_frequency), lw=2, label = "wave")
ax.set_xlabel('Time [s]')
# adjust the main plot to make room for the sliders
fig.subplots_adjust(left=0.25, bottom=0.25)
initx = 0.4
inity = 0.2
def l(x,y):
return (x,y)
legend = fig.legend(title = 'title', prop={'size': 8}, bbox_to_anchor = l(initx,inity))
legend.remove( )
# Make a horizontal slider to control the frequency.
axfreq = fig.add_axes([0.25, 0.1, 0.3, 0.3])
freq_slider = Slider(
ax=axfreq,
label='Frequency [Hz]',
valmin=0.1,
valmax=30,
valinit=init_frequency,
)
# Make a vertically oriented slider to control the amplitude
axamp = fig.add_axes([0.1, 0.25, 0.0225, 0.63])
amp_slider = Slider(
ax=axamp,
label="Amplitude",
valmin=0,
valmax=10,
valinit=init_amplitude,
orientation="vertical"
)
# The function to be called anytime a slider's value changes
def update(val):
legend = plt.legend(title = '$J_{xx}$', prop={'size': 8}, bbox_to_anchor= l(amp_slider.val, freq_slider.val))
legend.remove()
#line.set_ydata(f(t, amp_slider.val, freq_slider.val))
fig.canvas.draw_idle()
# register the update function with each slider
freq_slider.on_changed(update)
amp_slider.on_changed(update)
# Create a `matplotlib.widgets.Button` to reset the sliders to initial values.
resetax = fig.add_axes([0.8, 0.025, 0.1, 0.04])
button = Button(resetax, 'Reset', hovercolor='0.975')
def reset(event):
freq_slider.reset()
amp_slider.reset()
button.on_clicked(reset)
plt.show()
Is it even possible to update other matplotlib plot parameters like xticks/yticks or xlim/ylim with a slider, rather than the actual plotted data? I am asking so that I can speed up the graphing process, as I tend to lose a lot of time just getting the right plot parameters whilst making plots presentable, and would like to automate this in some way.
I'm working on a python module that creates a matplotlib figure with an on_resize listener. The listener forces the height of the lower axes to a specific number of pixels (rather than scaling relative to figure size). It works. However, if (in matplotlib interactive mode) after creating the plot the user calls fig.subplots_adjust() it messes up subplot sizes. Here's a radically simplified version of what the module does:
import matplotlib.pyplot as plt
plt.ion()
def make_plot():
fig = plt.figure()
gs = plt.GridSpec(10, 1, figure=fig)
ax_upper = fig.add_subplot(gs[:-1])
ax_lower = fig.add_subplot(gs[-1])
ax_upper.plot([0, 1])
ax_lower.plot([0, 1])
fig.canvas.mpl_connect('resize_event', on_resize)
return fig
def on_resize(event):
fig = event.canvas.figure
# get the current position
ax_lower_pos = list(fig.axes[1].get_position().bounds) # L,B,W,H
# compute desired height in figure-relative coords
desired_height_px = 40
xform = fig.transFigure.inverted()
desired_height_rel = xform.transform([0, desired_height_px])[1]
# set the new height
ax_lower_pos[-1] = desired_height_rel
fig.axes[1].set_position(ax_lower_pos)
# adjust ax_upper accordingly
ax_lower_top = fig.axes[1].get_position().extents[-1] # L,B,R,T
ax_upper_pos = list(fig.axes[0].get_position().bounds) # L,B,W,H
# new bottom
new_upper_bottom = ax_lower_top + desired_height_rel
ax_upper_pos[1] = new_upper_bottom
# new height
ax_upper_top = fig.axes[0].get_position().extents[-1] # L,B,R,T
new_upper_height = ax_upper_top - new_upper_bottom
ax_upper_pos[-1] = new_upper_height
# set the new position
fig.axes[0].set_position(ax_upper_pos)
fig.canvas.draw()
Here's the output if the user calls fig = make_plot():
Now if the user calls fig.subplots_adjust, the bottom axis is squished and the space between bottom and top axes is even more squished (the on_resize listener had set them both to 40px):
fig.subplots_adjust(top=0.7)
At this point, grabbing the corner of the window and dragging even a tiny bit is enough to trigger the on_resize listener and restore what I want (fixed pixel height for bottom axes and space between axes) while keeping the newly-added wide top margin intact:
How can I get that result without having to manually trigger a resize event? As far as I can tell, subplots_adjust does not fire off any events that I could listen for.
I think the problem lies in ax.update_params() updating the axes position with a figbox taken from the underlying subplotspec (which as far as I can tell doesn't get updated after initial figure creation?). (note: update_params is called from within subplots_adjust, see here).
The underlying problem seems to be to make an axes with a specific height in pixels. An easy solution to this is to use mpl_toolkits.axes_grid1's make_axes_locatable.
This allows to get rid of any callback and hence of the complete problem of the race condition in the events.
A note: The plot seems to be part of a bigger library. Since it is always nice not to patronize the users of such packages, one would usually allow them to specify the axes to plot to, such that they can put the plot into a bigger figure with other elements. The below solution makes this particularly easy.
Of course, also calling plt.subplots_adjust is still possible at any time.
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1.axes_divider import make_axes_locatable
desired_height_px = 40 #pixel
def make_plot(ax=None):
if not ax:
fig, ax = plt.subplots()
else:
fig = ax.figure
div = make_axes_locatable(ax)
cax = div.append_axes("bottom", desired_height_px/fig.dpi, pad=0.25)
sc1 = ax.scatter([2,1,3], [2,3,1], c=[1,2,3])
sc2 = cax.scatter([3,2,1],[2,3,1], c=[3,1,2])
return fig, ax, cax, (sc1, sc2)
fig, (ax1, ax2) = plt.subplots(1,2)
make_plot(ax=ax1)
#user plot on ax2
ax2.plot([1,3])
fig.subplots_adjust(top=0.7)
plt.show()
I'm having issues with redrawing the figure here. I allow the user to specify the units in the time scale (x-axis) and then I recalculate and call this function plots(). I want the plot to simply update, not append another plot to the figure.
def plots():
global vlgaBuffSorted
cntr()
result = collections.defaultdict(list)
for d in vlgaBuffSorted:
result[d['event']].append(d)
result_list = result.values()
f = Figure()
graph1 = f.add_subplot(211)
graph2 = f.add_subplot(212,sharex=graph1)
for item in result_list:
tL = []
vgsL = []
vdsL = []
isubL = []
for dict in item:
tL.append(dict['time'])
vgsL.append(dict['vgs'])
vdsL.append(dict['vds'])
isubL.append(dict['isub'])
graph1.plot(tL,vdsL,'bo',label='a')
graph1.plot(tL,vgsL,'rp',label='b')
graph2.plot(tL,isubL,'b-',label='c')
plotCanvas = FigureCanvasTkAgg(f, pltFrame)
toolbar = NavigationToolbar2TkAgg(plotCanvas, pltFrame)
toolbar.pack(side=BOTTOM)
plotCanvas.get_tk_widget().pack(side=TOP)
You essentially have two options:
Do exactly what you're currently doing, but call graph1.clear() and graph2.clear() before replotting the data. This is the slowest, but most simplest and most robust option.
Instead of replotting, you can just update the data of the plot objects. You'll need to make some changes in your code, but this should be much, much faster than replotting things every time. However, the shape of the data that you're plotting can't change, and if the range of your data is changing, you'll need to manually reset the x and y axis limits.
To give an example of the second option:
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0, 6*np.pi, 100)
y = np.sin(x)
# You probably won't need this if you're embedding things in a tkinter plot...
plt.ion()
fig = plt.figure()
ax = fig.add_subplot(111)
line1, = ax.plot(x, y, 'r-') # Returns a tuple of line objects, thus the comma
for phase in np.linspace(0, 10*np.pi, 500):
line1.set_ydata(np.sin(x + phase))
fig.canvas.draw()
fig.canvas.flush_events()
You can also do like the following:
This will draw a 10x1 random matrix data on the plot for 50 cycles of the for loop.
import matplotlib.pyplot as plt
import numpy as np
plt.ion()
for i in range(50):
y = np.random.random([10,1])
plt.plot(y)
plt.draw()
plt.pause(0.0001)
plt.clf()
This worked for me. Repeatedly calls a function updating the graph every time.
import matplotlib.pyplot as plt
import matplotlib.animation as anim
def plot_cont(fun, xmax):
y = []
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
def update(i):
yi = fun()
y.append(yi)
x = range(len(y))
ax.clear()
ax.plot(x, y)
print i, ': ', yi
a = anim.FuncAnimation(fig, update, frames=xmax, repeat=False)
plt.show()
"fun" is a function that returns an integer.
FuncAnimation will repeatedly call "update", it will do that "xmax" times.
This worked for me:
from matplotlib import pyplot as plt
from IPython.display import clear_output
import numpy as np
for i in range(50):
clear_output(wait=True)
y = np.random.random([10,1])
plt.plot(y)
plt.show()
I have released a package called python-drawnow that provides functionality to let a figure update, typically called within a for loop, similar to Matlab's drawnow.
An example usage:
from pylab import figure, plot, ion, linspace, arange, sin, pi
def draw_fig():
# can be arbitrarily complex; just to draw a figure
#figure() # don't call!
plot(t, x)
#show() # don't call!
N = 1e3
figure() # call here instead!
ion() # enable interactivity
t = linspace(0, 2*pi, num=N)
for i in arange(100):
x = sin(2 * pi * i**2 * t / 100.0)
drawnow(draw_fig)
This package works with any matplotlib figure and provides options to wait after each figure update or drop into the debugger.
In case anyone comes across this article looking for what I was looking for, I found examples at
How to visualize scalar 2D data with Matplotlib?
and
http://mri.brechmos.org/2009/07/automatically-update-a-figure-in-a-loop
(on web.archive.org)
then modified them to use imshow with an input stack of frames, instead of generating and using contours on the fly.
Starting with a 3D array of images of shape (nBins, nBins, nBins), called frames.
def animate_frames(frames):
nBins = frames.shape[0]
frame = frames[0]
tempCS1 = plt.imshow(frame, cmap=plt.cm.gray)
for k in range(nBins):
frame = frames[k]
tempCS1 = plt.imshow(frame, cmap=plt.cm.gray)
del tempCS1
fig.canvas.draw()
#time.sleep(1e-2) #unnecessary, but useful
fig.clf()
fig = plt.figure()
ax = fig.add_subplot(111)
win = fig.canvas.manager.window
fig.canvas.manager.window.after(100, animate_frames, frames)
I also found a much simpler way to go about this whole process, albeit less robust:
fig = plt.figure()
for k in range(nBins):
plt.clf()
plt.imshow(frames[k],cmap=plt.cm.gray)
fig.canvas.draw()
time.sleep(1e-6) #unnecessary, but useful
Note that both of these only seem to work with ipython --pylab=tk, a.k.a.backend = TkAgg
Thank you for the help with everything.
All of the above might be true, however for me "online-updating" of figures only works with some backends, specifically wx. You just might try to change to this, e.g. by starting ipython/pylab by ipython --pylab=wx! Good luck!
Based on the other answers, I wrapped the figure's update in a python decorator to separate the plot's update mechanism from the actual plot. This way, it is much easier to update any plot.
def plotlive(func):
plt.ion()
#functools.wraps(func)
def new_func(*args, **kwargs):
# Clear all axes in the current figure.
axes = plt.gcf().get_axes()
for axis in axes:
axis.cla()
# Call func to plot something
result = func(*args, **kwargs)
# Draw the plot
plt.draw()
plt.pause(0.01)
return result
return new_func
Usage example
And then you can use it like any other decorator.
#plotlive
def plot_something_live(ax, x, y):
ax.plot(x, y)
ax.set_ylim([0, 100])
The only constraint is that you have to create the figure before the loop:
fig, ax = plt.subplots()
for i in range(100):
x = np.arange(100)
y = np.full([100], fill_value=i)
plot_something_live(ax, x, y)
let say I have this code:
num_rows = 10
num_cols = 1
fig, axs = plt.subplots(num_rows, num_cols, sharex=True)
for i in xrange(num_rows):
ax = axs[i]
ax.plot(np.arange(10), np.arange(10)**i)
plt.show()
the result figure has too much info and now I want to pick 1 of the axes and draw it alone in a new figure
I tried doing something like this
def on_click(event):
axes = event.inaxes.get_axes()
fig2 = plt.figure(15)
fig2.axes.append(axes)
fig2.show()
fig.canvas.mpl_connect('button_press_event', on_click)
but it didn't quite work. what would be the correct way to do it? searching through the docs and throw SE gave hardly any useful result
edit:
I don't mind redrawing the chosen axes, but I'm not sure how can I tell which of the axes was chosen so if that information is available somehow then it is a valid solution for me
edit #2:
so I've managed to do something like this:
def on_click(event):
fig2 = plt.figure(15)
fig2.clf()
for line in event.inaxes.axes.get_lines():
xydata = line.get_xydata()
plt.plot(xydata[:, 0], xydata[:, 1])
fig2.show()
which seems to be "working" (all the other information is lost - labels, lines colors, lines style, lines width, xlim, ylim, etc...)
but I feel like there must be a nicer way to do it
thanks
Copying the axes
The inital answer here does not work, we keep it for future reference and also to see why a more sophisticated approach is needed.
#There are some pitfalls on the way with the initial approach.
#Adding an `axes` to a figure can be done via `fig.add_axes(axes)`. However, at this point,
#the axes' figure needs to be the figure the axes should be added to.
#This may sound a bit like running in circles but we can actually set the axes'
#figure as `axes.figure = fig2` and hence break out of this.
#One might then also position the axes in the new figure to take the usual dimensions.
#For this a dummy axes can be added first, the axes can change its position to the position
#of the dummy axes and then the dummy axes is removed again. In total, this would look as follows.
import matplotlib.pyplot as plt
import numpy as np
num_rows = 10
num_cols = 1
fig, axs = plt.subplots(num_rows, num_cols, sharex=True)
for i in xrange(num_rows):
ax = axs[i]
ax.plot(np.arange(10), np.arange(10)**i)
def on_click(event):
axes = event.inaxes
if not axes: return
fig2 = plt.figure()
axes.figure=fig2
fig2.axes.append(axes)
fig2.add_axes(axes)
dummy = fig2.add_subplot(111)
axes.set_position(dummy.get_position())
dummy.remove()
fig2.show()
fig.canvas.mpl_connect('button_press_event', on_click)
plt.show()
#So far so good, however, be aware that now after a click the axes is somehow
#residing in both figures, which can cause all sorts of problems, e.g. if you
# want to resize or save the initial figure.
Instead, the following will work:
Pickling the figure
The problem is that axes cannot be copied (even deepcopy will fail). Hence to obtain a true copy of an axes, you may need to use pickle. The following will work. It pickles the complete figure and removes all but the one axes to show.
import matplotlib.pyplot as plt
import numpy as np
import pickle
import io
num_rows = 10
num_cols = 1
fig, axs = plt.subplots(num_rows, num_cols, sharex=True)
for i in range(num_rows):
ax = axs[i]
ax.plot(np.arange(10), np.arange(10)**i)
def on_click(event):
if not event.inaxes: return
inx = list(fig.axes).index(event.inaxes)
buf = io.BytesIO()
pickle.dump(fig, buf)
buf.seek(0)
fig2 = pickle.load(buf)
for i, ax in enumerate(fig2.axes):
if i != inx:
fig2.delaxes(ax)
else:
axes=ax
axes.change_geometry(1,1,1)
fig2.show()
fig.canvas.mpl_connect('button_press_event', on_click)
plt.show()
Recreate plots
The alternative to the above is of course to recreate the plot in a new figure each time the axes is clicked. To this end one may use a function that creates a plot on a specified axes and with a specified index as input. Using this function during figure creation as well as later for replicating the plot in another figure ensures to have the same plot in all cases.
import matplotlib.pyplot as plt
import numpy as np
num_rows = 10
num_cols = 1
colors = plt.rcParams["axes.prop_cycle"].by_key()["color"]
labels = ["Label {}".format(i+1) for i in range(num_rows)]
def myplot(i, ax):
ax.plot(np.arange(10), np.arange(10)**i, color=colors[i])
ax.set_ylabel(labels[i])
fig, axs = plt.subplots(num_rows, num_cols, sharex=True)
for i in xrange(num_rows):
myplot(i, axs[i])
def on_click(event):
axes = event.inaxes
if not axes: return
inx = list(fig.axes).index(axes)
fig2 = plt.figure()
ax = fig2.add_subplot(111)
myplot(inx, ax)
fig2.show()
fig.canvas.mpl_connect('button_press_event', on_click)
plt.show()
If you have, for example, a plot with three lines generated by the function plot_something, you can do something like this:
fig, axs = plot_something()
ax = axs[2]
l = list(ax.get_lines())[0]
l2 = list(ax.get_lines())[1]
l3 = list(ax.get_lines())[2]
plot(l.get_data()[0], l.get_data()[1])
plot(l2.get_data()[0], l2.get_data()[1])
plot(l3.get_data()[0], l3.get_data()[1])
ylim(0,1)
I have been copy pasting code snippets from http://goo.gl/J802b0 into an ipython notebook console to try out these matplotlib features. I get the sliders and buttons appearing after I shift-enter the code cells, but without any functionality.
I am running ipython notebook --pylab inline.
Any suggestions would be very much appreciated.
Here is an example that plots a sine wave and adds next and previous buttons
that supposedly will change the axes, but I get no interactivity:
from matplotlib.widgets import Button
fig, ax = plt.subplots()
fig.subplots_adjust(bottom=0.2)
t = np.linspace(0, 10, 1000)
line, = plt.plot(t, np.sin(t), lw=2)
class Index:
dt = 0
def next(self, event):
self.dt -= 1
line.set_ydata(np.sin(t + self.dt))
fig.canvas.draw()
def prev(self, event):
self.dt += 1
line.set_ydata(np.sin(t + self.dt))
fig.canvas.draw()
callback = Index()
axprev = plt.axes([0.7, 0.05, 0.1, 0.075])
axnext = plt.axes([0.81, 0.05, 0.1, 0.075])
bnext = Button(axnext, '>')
bnext.on_clicked(callback.next)
bprev = Button(axprev, '<')
bprev.on_clicked(callback.prev)
The figures are served in the web-browser as a png and do not have kind of image map (look at the source of what the note book serves to you) so I don't think this functionality exists in in-line figures yet.
The code should work if you use one of included interactive backends (with your gui toolkit of choice).