matplotlib.widget not working in ipython notebook - matplotlib

I have been copy pasting code snippets from http://goo.gl/J802b0 into an ipython notebook console to try out these matplotlib features. I get the sliders and buttons appearing after I shift-enter the code cells, but without any functionality.
I am running ipython notebook --pylab inline.
Any suggestions would be very much appreciated.
Here is an example that plots a sine wave and adds next and previous buttons
that supposedly will change the axes, but I get no interactivity:
from matplotlib.widgets import Button
fig, ax = plt.subplots()
fig.subplots_adjust(bottom=0.2)
t = np.linspace(0, 10, 1000)
line, = plt.plot(t, np.sin(t), lw=2)
class Index:
dt = 0
def next(self, event):
self.dt -= 1
line.set_ydata(np.sin(t + self.dt))
fig.canvas.draw()
def prev(self, event):
self.dt += 1
line.set_ydata(np.sin(t + self.dt))
fig.canvas.draw()
callback = Index()
axprev = plt.axes([0.7, 0.05, 0.1, 0.075])
axnext = plt.axes([0.81, 0.05, 0.1, 0.075])
bnext = Button(axnext, '>')
bnext.on_clicked(callback.next)
bprev = Button(axprev, '<')
bprev.on_clicked(callback.prev)

The figures are served in the web-browser as a png and do not have kind of image map (look at the source of what the note book serves to you) so I don't think this functionality exists in in-line figures yet.
The code should work if you use one of included interactive backends (with your gui toolkit of choice).

Related

Matplotlib sliders on multiple figures

I am writing a Python tool that needs several figures open at the same time, each one with its own widgets (sliders, for the most part). I don't need any interactions across the figures here. Each figure is independent of the other ones, with its own plot and its own sliders affecting only itself.
I can get Matplotlib sliders working fine on a single figure, but I can't get them to work on multiple figures concurrently. Only the sliders of the LAST figure to open are working. The other ones are unresponsive.
I recreated my problem with the simple code below, starting from the example in the Matplotlib.Slider doc. If I run it as-is, only the sliders for the second figure (amplitude) works. The other doesn't. If I invert the two function calls at the bottom, it's the other way around.
I've had no luck googling solutions or pointers. Any help would be much appreciated.
I'm on Python 3.9.12, btw. I can upload a requirements file if someone tries and cannot reproduce the issue. Thank you!
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.widgets import Slider
# The parametrized function to be plotted
def f(time, amplitude, frequency):
return amplitude * np.sin(2 * np.pi * frequency * time)
# Define initial parameters
init_amplitude = 5
init_frequency = 3
t = np.linspace(0, 1, 1000)
def create_first_fig():
# Create the figure and the line that we will manipulate
fig1, ax1 = plt.subplots()
line1, = ax1.plot(t, f(t, init_amplitude, init_frequency), lw=2, color='b')
ax1.title.set_text('First plot - interactive frequency')
ax1.set_xlabel('Time [s]')
# adjust the main plot to make room for the sliders
fig1.subplots_adjust(left=0.25, bottom=0.25)
# Make a horizontal slider to control the frequency.
axfreq = fig1.add_axes([0.25, 0.1, 0.65, 0.03])
freq_slider = Slider(
ax=axfreq,
label='Frequency [Hz]',
valmin=0,
valmax=30,
valinit=init_frequency,
)
# register the update function with each slider
freq_slider.on_changed(lambda val: update_first_fig(val, fig1, line1))
plt.draw()
plt.pause(0.1)
return fig1
# The function to be called anytime a slider's value changes
def update_first_fig(val, fig, line):
line.set_ydata(f(t, init_amplitude, val))
fig.canvas.draw_idle()
plt.pause(0.1)
def create_second_fig():
# Create the figure and the line that we will manipulate
fig2, ax2 = plt.subplots()
line2, = ax2.plot(t, f(t, init_amplitude, init_frequency), lw=2, color='r')
ax2.title.set_text('Second plot - interactive amplitude')
ax2.set_xlabel('Time [s]')
# adjust the main plot to make room for the sliders
fig2.subplots_adjust(left=0.25, bottom=0.25)
# Make a vertically oriented slider to control the amplitude
axamp = fig2.add_axes([0.1, 0.25, 0.0225, 0.63])
amp_slider = Slider(
ax=axamp,
label="Amplitude",
valmin=0,
valmax=10,
valinit=init_amplitude,
orientation="vertical",
)
# register the update function with each slider
amp_slider.on_changed(lambda val: update_second_fig(val, fig2, line2))
plt.draw()
plt.pause(0.1)
return fig2
# The function to be called anytime a slider's value changes
def update_second_fig(val, fig, line):
line.set_ydata(f(t, val, init_frequency))
fig.canvas.draw_idle()
plt.pause(0.1)
figure1 = create_first_fig()
figure2 = create_second_fig()
plt.show()
I would expect the slider in both figures to work the way it does when I only open the corresponding figure. So far it's only the slider in the figure that's created last that works.
Edit in case someone else looks at this: see Yulia V's answer below. It works perfectly, including in my initial application. The site doesn't let me upvote it because I am too new on here, but it's a perfect solution to my problem. Thanks Yulia V!
You need to save the references to sliders as variables to make it work. No idea why, but this is how matplotlib works.
Specifically, in your functions, you need to have
return freq_slider, fig1
...
return amp_slider, fig2
instead of
return fig1
...
return fig2
and in the main script,
freq_slider, figure1 = create_first_fig()
amp_slider, figure2 = create_second_fig()
instead of
figure1 = create_first_fig()
figure2 = create_second_fig()
Just to illustrate my comment below #Yulia V's answer, it works too if we store the sliders as an attribute of the figure instead of returning them:
def create_first_fig():
...
fig1._slider = freq_slider
...
return fig1
def create_first_fig():
...
fig2._slider = amp_slider
...
return fig2
...
figure1 = create_first_fig()
figure2 = create_second_fig()

Why isn't my histogram showing on Jupyter notebook?

So I'm relatively new to coding and have recently taken the monstrous task of building a few climate models for my MSc thesis. Using this code I have adapted it and it now shows no error messages except now it doesn't show any figure as an output. Any solutions?
I input
%matplotlib notebook at the top of the code, and also put plt.show(); at the bottom of the script (as per some recommendations through some similar queries)... but still doesn't work. Prior to this it was showing <Figure Ssize 432x288 with 0 Axes> which i presumed may be the problem but i can't figure out why there are 0 axes?
Any recommendations/solutions?
Thanks!
As requested - my code:
import iris.quickplot as qplt
import iris.analysis.cartography
import matplotlib.dates as mdates
def main():
Current45 = '....X.nc'
Current45 = iris.load_cube(Current45)
lats = iris.coords.DimCoord(Current45.coords()[1].points[:,0], \
standard_name='latitude', units='degrees')
lons = Current45.coords()[2].points[0]
for i in range(len(lons)):
if lons[i]>100.:
lons[i] = lons[i]-360.
lons = iris.coords.DimCoord(lons, \
standard_name='longitude', units='degrees')
Current45.remove_coord('latitude')
Current45.remove_coord('longitude')
Current45.add_dim_coord(lats, 1)
Current45.add_dim_coord(lons, 2)
Current45.convert_units('Celsius')
Colombia = iris.Constraint(longitude=lambda v: -74.73 <= v <= -76.20, \
latitude=lambda v: 5.30 <= v <= 4.43)
Current45 = Current45.extract(Colombia)
iriscc.add_day_of_year(Current45, 'time')
Current45.coord('latitude').guess_bounds()
Current45.coord('longitude').guess_bounds()
Current45_grid_areas = iris.analysis.cartography.area_weights(Current45)
Current45 = Current45.collapsed(['latitude', 'longitude'],
iris.analysis.MEAN,
weights=Current45_grid_areas)
Histogram = Current45.data
#frq, bins, patches = plt.hist(Histogram, bins=np.arange(20,37,2))
frq, bins, patches = plt.hist(Histogram, bins=np.arange(16,45,2), color='blue')
print (frq)
thresh = 32
plt.axvline(x=thresh, color='green', linestyle='dashed', linewidth=2)
plt.xlabel("Daily Max Temperature / Celsius")
plt.ylabel("Number of days")
fig = plt.gcf()
plt.show();
My code with blank figure at the bottom
In the code, you are never calling the main function, so the figure you are showing is empty.
You should call main() at some point in your code before the plt.gcf() or plt.show.
Edit
In more detail:
You are writing your main() function in this snippet of code, and then, without indent, you are calling pyplot to get the current figure, where pyplot just gives you en empty figure back (the gcf()-call is not necessary anyways in your code) and plt.show() shows no an empty figure.
You can or cannot move the plt.show() into you main() function, but at one point you must definitely call that function otherwise none of it is executed.
Edit 2:
# function definition
def main():
...
# function call
main()
# show figure
plt.show()

subplots_adjust moves axes unpredictably?

I'm working on a python module that creates a matplotlib figure with an on_resize listener. The listener forces the height of the lower axes to a specific number of pixels (rather than scaling relative to figure size). It works. However, if (in matplotlib interactive mode) after creating the plot the user calls fig.subplots_adjust() it messes up subplot sizes. Here's a radically simplified version of what the module does:
import matplotlib.pyplot as plt
plt.ion()
def make_plot():
fig = plt.figure()
gs = plt.GridSpec(10, 1, figure=fig)
ax_upper = fig.add_subplot(gs[:-1])
ax_lower = fig.add_subplot(gs[-1])
ax_upper.plot([0, 1])
ax_lower.plot([0, 1])
fig.canvas.mpl_connect('resize_event', on_resize)
return fig
def on_resize(event):
fig = event.canvas.figure
# get the current position
ax_lower_pos = list(fig.axes[1].get_position().bounds) # L,B,W,H
# compute desired height in figure-relative coords
desired_height_px = 40
xform = fig.transFigure.inverted()
desired_height_rel = xform.transform([0, desired_height_px])[1]
# set the new height
ax_lower_pos[-1] = desired_height_rel
fig.axes[1].set_position(ax_lower_pos)
# adjust ax_upper accordingly
ax_lower_top = fig.axes[1].get_position().extents[-1] # L,B,R,T
ax_upper_pos = list(fig.axes[0].get_position().bounds) # L,B,W,H
# new bottom
new_upper_bottom = ax_lower_top + desired_height_rel
ax_upper_pos[1] = new_upper_bottom
# new height
ax_upper_top = fig.axes[0].get_position().extents[-1] # L,B,R,T
new_upper_height = ax_upper_top - new_upper_bottom
ax_upper_pos[-1] = new_upper_height
# set the new position
fig.axes[0].set_position(ax_upper_pos)
fig.canvas.draw()
Here's the output if the user calls fig = make_plot():
Now if the user calls fig.subplots_adjust, the bottom axis is squished and the space between bottom and top axes is even more squished (the on_resize listener had set them both to 40px):
fig.subplots_adjust(top=0.7)
At this point, grabbing the corner of the window and dragging even a tiny bit is enough to trigger the on_resize listener and restore what I want (fixed pixel height for bottom axes and space between axes) while keeping the newly-added wide top margin intact:
How can I get that result without having to manually trigger a resize event? As far as I can tell, subplots_adjust does not fire off any events that I could listen for.
I think the problem lies in ax.update_params() updating the axes position with a figbox taken from the underlying subplotspec (which as far as I can tell doesn't get updated after initial figure creation?). (note: update_params is called from within subplots_adjust, see here).
The underlying problem seems to be to make an axes with a specific height in pixels. An easy solution to this is to use mpl_toolkits.axes_grid1's make_axes_locatable.
This allows to get rid of any callback and hence of the complete problem of the race condition in the events.
A note: The plot seems to be part of a bigger library. Since it is always nice not to patronize the users of such packages, one would usually allow them to specify the axes to plot to, such that they can put the plot into a bigger figure with other elements. The below solution makes this particularly easy.
Of course, also calling plt.subplots_adjust is still possible at any time.
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1.axes_divider import make_axes_locatable
desired_height_px = 40 #pixel
def make_plot(ax=None):
if not ax:
fig, ax = plt.subplots()
else:
fig = ax.figure
div = make_axes_locatable(ax)
cax = div.append_axes("bottom", desired_height_px/fig.dpi, pad=0.25)
sc1 = ax.scatter([2,1,3], [2,3,1], c=[1,2,3])
sc2 = cax.scatter([3,2,1],[2,3,1], c=[3,1,2])
return fig, ax, cax, (sc1, sc2)
fig, (ax1, ax2) = plt.subplots(1,2)
make_plot(ax=ax1)
#user plot on ax2
ax2.plot([1,3])
fig.subplots_adjust(top=0.7)
plt.show()

Fast Live Plotting in Matplotlib / PyPlot

For years, I've been struggling to get efficient live plotting in matplotlib, and to this day I remain unsatisfied.
I want a redraw_figure function that updates the figure "live" (as the code runs), and will display the latest plots if I stop at a breakpoint.
Here is some demo code:
import time
from matplotlib import pyplot as plt
import numpy as np
def live_update_demo():
plt.subplot(2, 1, 1)
h1 = plt.imshow(np.random.randn(30, 30))
redraw_figure()
plt.subplot(2, 1, 2)
h2, = plt.plot(np.random.randn(50))
redraw_figure()
t_start = time.time()
for i in xrange(1000):
h1.set_data(np.random.randn(30, 30))
redraw_figure()
h2.set_ydata(np.random.randn(50))
redraw_figure()
print 'Mean Frame Rate: %.3gFPS' % ((i+1) / (time.time() - t_start))
def redraw_figure():
plt.draw()
plt.pause(0.00001)
live_update_demo()
Plots should update live when the code is run, and we should see the latest data when stopping at any breakpoint after redraw_figure(). The question is how to best implement redraw_figure()
In the implementation above (plt.draw(); plt.pause(0.00001)), it works, but is very slow (~3.7FPS)
I can implement it as:
def redraw_figure():
plt.gcf().canvas.flush_events()
plt.show(block=False)
And it runs faster (~11FPS), but plots are not up-to date when you stop at breakpoints (eg if I put a breakpoint on the t_start = ... line, the second plot does not appear).
Strangely enough, what does actually work is calling the show twice:
def redraw_figure():
plt.gcf().canvas.flush_events()
plt.show(block=False)
plt.show(block=False)
Which gives ~11FPS and does keep plots up-to-data if your break on any line.
Now I've heard it said that the "block" keyword is deprecated. And calling the same function twice seems like a weird, probably-non-portable hack anyway.
So what can I put in this function that will plot at a reasonable frame rate, isn't a giant kludge, and preferably will work across backends and systems?
Some notes:
I'm on OSX, and using TkAgg backend, but solutions on any backend/system are welcome
Interactive mode "On" will not work, because it does not update live. It just updates when in the Python console when the interpreter waits for user input.
A blog suggested the implementation:
def redraw_figure():
fig = plt.gcf()
fig.canvas.draw()
fig.canvas.flush_events()
But at least on my system, that does not redraw the plots at all.
So, if anybody has an answer, you would directly make me and thousands of others very happy. Their happiness would probably trickle through to their friends and relatives, and their friends and relatives, and so on, so that you could potentially improve the lives of billions.
Conclusions
ImportanceOfBeingErnest shows how you can use blit for faster plotting, but it's not as simple as putting something different in the redraw_figure function (you need to keep track of what things to redraw).
First of all, the code that is posted in the question runs with 7 fps on my machine, with QT4Agg as backend.
Now, as has been suggested in many posts, like here or here, using blit might be an option. Although this article mentions that blit causes strong memory leakage, I could not observe that.
I have modified your code a bit and compared the frame rate with and without the use of blit. The code below gives
28 fps when run without blit
175 fps with blit
Code:
import time
from matplotlib import pyplot as plt
import numpy as np
def live_update_demo(blit = False):
x = np.linspace(0,50., num=100)
X,Y = np.meshgrid(x,x)
fig = plt.figure()
ax1 = fig.add_subplot(2, 1, 1)
ax2 = fig.add_subplot(2, 1, 2)
img = ax1.imshow(X, vmin=-1, vmax=1, interpolation="None", cmap="RdBu")
line, = ax2.plot([], lw=3)
text = ax2.text(0.8,0.5, "")
ax2.set_xlim(x.min(), x.max())
ax2.set_ylim([-1.1, 1.1])
fig.canvas.draw() # note that the first draw comes before setting data
if blit:
# cache the background
axbackground = fig.canvas.copy_from_bbox(ax1.bbox)
ax2background = fig.canvas.copy_from_bbox(ax2.bbox)
plt.show(block=False)
t_start = time.time()
k=0.
for i in np.arange(1000):
img.set_data(np.sin(X/3.+k)*np.cos(Y/3.+k))
line.set_data(x, np.sin(x/3.+k))
tx = 'Mean Frame Rate:\n {fps:.3f}FPS'.format(fps= ((i+1) / (time.time() - t_start)) )
text.set_text(tx)
#print tx
k+=0.11
if blit:
# restore background
fig.canvas.restore_region(axbackground)
fig.canvas.restore_region(ax2background)
# redraw just the points
ax1.draw_artist(img)
ax2.draw_artist(line)
ax2.draw_artist(text)
# fill in the axes rectangle
fig.canvas.blit(ax1.bbox)
fig.canvas.blit(ax2.bbox)
# in this post http://bastibe.de/2013-05-30-speeding-up-matplotlib.html
# it is mentionned that blit causes strong memory leakage.
# however, I did not observe that.
else:
# redraw everything
fig.canvas.draw()
fig.canvas.flush_events()
#alternatively you could use
#plt.pause(0.000000000001)
# however plt.pause calls canvas.draw(), as can be read here:
#http://bastibe.de/2013-05-30-speeding-up-matplotlib.html
live_update_demo(True) # 175 fps
#live_update_demo(False) # 28 fps
Update:
For faster plotting, one may consider using pyqtgraph.
As the pyqtgraph documentation puts it: "For plotting, pyqtgraph is not nearly as complete/mature as matplotlib, but runs much faster."
I ported the above example to pyqtgraph. And although it looks kind of ugly, it runs with 250 fps on my machine.
Summing that up,
matplotlib (without blitting): 28 fps
matplotlib (with blitting): 175 fps
pyqtgraph : 250 fps
pyqtgraph code:
import sys
import time
from pyqtgraph.Qt import QtCore, QtGui
import numpy as np
import pyqtgraph as pg
class App(QtGui.QMainWindow):
def __init__(self, parent=None):
super(App, self).__init__(parent)
#### Create Gui Elements ###########
self.mainbox = QtGui.QWidget()
self.setCentralWidget(self.mainbox)
self.mainbox.setLayout(QtGui.QVBoxLayout())
self.canvas = pg.GraphicsLayoutWidget()
self.mainbox.layout().addWidget(self.canvas)
self.label = QtGui.QLabel()
self.mainbox.layout().addWidget(self.label)
self.view = self.canvas.addViewBox()
self.view.setAspectLocked(True)
self.view.setRange(QtCore.QRectF(0,0, 100, 100))
# image plot
self.img = pg.ImageItem(border='w')
self.view.addItem(self.img)
self.canvas.nextRow()
# line plot
self.otherplot = self.canvas.addPlot()
self.h2 = self.otherplot.plot(pen='y')
#### Set Data #####################
self.x = np.linspace(0,50., num=100)
self.X,self.Y = np.meshgrid(self.x,self.x)
self.counter = 0
self.fps = 0.
self.lastupdate = time.time()
#### Start #####################
self._update()
def _update(self):
self.data = np.sin(self.X/3.+self.counter/9.)*np.cos(self.Y/3.+self.counter/9.)
self.ydata = np.sin(self.x/3.+ self.counter/9.)
self.img.setImage(self.data)
self.h2.setData(self.ydata)
now = time.time()
dt = (now-self.lastupdate)
if dt <= 0:
dt = 0.000000000001
fps2 = 1.0 / dt
self.lastupdate = now
self.fps = self.fps * 0.9 + fps2 * 0.1
tx = 'Mean Frame Rate: {fps:.3f} FPS'.format(fps=self.fps )
self.label.setText(tx)
QtCore.QTimer.singleShot(1, self._update)
self.counter += 1
if __name__ == '__main__':
app = QtGui.QApplication(sys.argv)
thisapp = App()
thisapp.show()
sys.exit(app.exec_())
Here's one way to do live plotting: get the plot as an image array then draw the image to a multithreaded screen.
Example using a pyformulas screen (~30 FPS):
import pyformulas as pf
import matplotlib.pyplot as plt
import numpy as np
import time
fig = plt.figure()
screen = pf.screen(title='Plot')
start = time.time()
for i in range(10000):
t = time.time() - start
x = np.linspace(t-3, t, 100)
y = np.sin(2*np.pi*x) + np.sin(3*np.pi*x)
plt.xlim(t-3,t)
plt.ylim(-3,3)
plt.plot(x, y, c='black')
# If we haven't already shown or saved the plot, then we need to draw the figure first...
fig.canvas.draw()
image = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
image = image.reshape(fig.canvas.get_width_height()[::-1] + (3,))
screen.update(image)
#screen.close()
Disclaimer: I'm the maintainer of pyformulas

Graphics issues when combining matplotlib widgets: Spanselector, cursor, fill_between:

I have found minor graphical issues while using the spanselector, cursor and fill_between widgets, which I would like to share with you.
All of them, can be experienced in this code (which I took from the matplolib example)
"""
The SpanSelector is a mouse widget to select a xmin/xmax range and plot the
detail view of the selected region in the lower axes
"""
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.widgets import SpanSelector
import matplotlib.widgets as widgets
Fig = plt.figure(figsize=(8,6))
Fig.set_facecolor('w')
Fig.set
Ax = Fig.add_subplot(211)
x = np.arange(0.0, 5.0, 0.01)
y = np.sin(2*np.pi*x) + 0.5*np.random.randn(len(x))
Ax.plot(x, y, '-')
Ax.set_ylim(-2,2)
Ax.set_title('Press left mouse button and drag to test')
RegionIndices = []
ax2 = Fig.add_subplot(212)
line2, = ax2.plot(x, y, '-')
def onselect(xmin, xmax):
if len(RegionIndices) == 2:
Ax.fill_between(x[:], 0.0, y[:],facecolor='White',alpha=1)
del RegionIndices[:]
indmin, indmax = np.searchsorted(x, (xmin, xmax))
indmax = min(len(x)-1, indmax)
Ax.fill_between(x[indmin:indmax], 0.0, y[indmin:indmax],facecolor='Blue',alpha=0.30)
thisx = x[indmin:indmax]
thisy = y[indmin:indmax]
line2.set_data(thisx, thisy)
ax2.set_xlim(thisx[0], thisx[-1])
ax2.set_ylim(thisy.min(), thisy.max())
Fig.canvas.draw()
RegionIndices.append(xmin)
RegionIndices.append(xmax)
# set useblit True on gtkagg for enhanced performance
span = SpanSelector(Ax, onselect, 'horizontal', useblit = True,rectprops=dict(alpha=0.5, facecolor='purple') )
cursor = widgets.Cursor(Ax, color="red", linewidth = 1, useblit = True)
plt.show()
I wonder if there is some way to avoid these two small issues:
1) You can see that when you select a region the spanselector box (purple) glitches. In this code the effect is barely noticeable but on plots with many lines is quite annoying (I have tried all the trueblit combinations to not effect)
2) In this code when you select a region, the area in the upper plot between the line and the horizontal axis is filled in blue. When you select a new region the old area is filled in white (to clear it) and the new one is filled with blue again. However, when I do that the line plotted, as well as, the horizontal axis, become thicker... Is there a way to clear such a region (generated with fill_between) without this happening... Or is it necessary to replot the graph? Initially, I am against doing this since I have a well structured code and importing all the data again into the spanselector method seems a bit messy... Which is the right way in python to delete selected regions of a plot?
Any advice would be most welcome