monitor cpu, gpu, memory usage in colab (pro) - google-colaboratory

I want to track the usage of the above resources while training a model with pyspark. Is there any built in method from colab, I have purchased colab pro, in order to store those numbers in a txt file? The goal is to train a model to predict these values, so we need a big amount of data, so monitoring by the graphs on the right hand side is not an option.
I have also tried using wandb, but couldn't make sense of it, so if someone has a tutorial i would be grateful.

Related

Long waiting when running training model with ML

I have trouble for long waiting when I run my training model with Machine Learning using CNNs. Maybe this because my pc has such a bad specs for machine learning.
I have 50000 images for my X_training and must wait up to 1 hours more until it's done.
I think maybe that someone can solve my problem. Thanks a lot
I would recommend you to use Google Collab. It’s free to use. You can access it withing Google Drive and make sure to change the runtime to GPU. In cases such as CNN, using GPUs can make your training process a lot faster.
Also, I don’t know how you are handling images, but if using TensorFlow/Keras I would also recommend you to use the ImageDataGenerator for not loading all images into memory at once, but loading the images needed within each batch. It can save some resources for the computer

Deep Learning with TensorFlow on Compute Engine VM

I'm actualy new in Machine Learning, but this theme is vary interesting for me, so Im using TensorFlow to classify some images from MNIST datasets...I run this code on Compute Engine(VM) at Google Cloud, because my computer is to weak for this. And the code actualy run well, but the problam is that when I each time enter to my VM and run the same code I need to wait while my model is training on CNN, and after I can make some tests or experiment with my data to plot or import some external images to impruve my accuracy etc.
Is There is some way to save my result of trainin model just once, some where, that when I will decide for example to enter to the same VM tomorrow...and dont wait anymore while my model is training. Is that possible to do this ?
Or there is maybe some another way to do something similar ?
You can save a trained model in TensorFlow and then use it later by loading it; that way you only have to train your model once, and use it as many times as you want. To do that, you can follow the TensorFlow documentation regarding that topic, where you can find information on how to save and load the model. In short, you will have to use the SavedModelBuilder class to define the type and location of your saved model, and then add the MetaGraphs and variables you want to save. Loading the saved model for posterior usage is even easier, as you will only have to run a command pointing to the location of the file in which the model was exported.
On the other hand, I would strongly recommend you to change your working environment in such a way that it can be more profitable for you. In Google Cloud you have the Cloud ML Engine service, which might be good for the type of work you are developing. It allows you to train your models and perform predictions without the need of an instance running all the required software. I happen to have worked a little bit with TensorFlow recently, and at first I was also working with a virtualized instance, but after following some tutorials I was able to save some money by migrating my work to ML Engine, as you are only charged for the usage. If you are using your VM only with that purpose, take a look at it.
You can of course consult all the available documentation, but as a first quickstart, if you are interested in ML Engine, I recommend you to have a look at how to train your models and how to get your predictions.

How to profile TensorFlow model

How can I profile TensorFlow models? I want at least to find ways to make the model faster, see how much GPU load I have, and how much GPU memory is consumed.
There are two ways to profile models. One way is a tensorboard. Here is a comprehensive tutorial about it and here is a good video.
Additionally, clicking on a node will display the exact total memory,
compute time, and tensor output sizes.
Another way is tensorflow debugger, which also has tutorials.

Real Time Object detection using TensorFlow

I have just started experimenting with Deep Learning and Computer Vision technologies. I came across this awesome tutorial. I have setup the TensorFlow environment using docker and trained my own sets of objects and it provided greater accuracy when I tested it out.
Now I want to make the same more real-time. For example, instead of giving an image of an object as the input, I want to utilize a webcam and make it recognize the object with the help of TensorFlow. Can you guys guide me with the right place to start with this work?
You may want to look at TensorFlow Serving so that you can decouple compute from sensors (and distribute the computation), or our C++ api. Beyond that, tensorflow was written emphasizing throughput rather than latency, so batch samples as much as you can. You don't need to run tensorflow at every frame, so input from a webcam should definitely be in the realm of possibilities. Making the network smaller, and buying better hardware are popular options.

Use summarization model without training

The tensorflow text summarization model as described here https://github.com/tensorflow/models/tree/master/textsum requires a multi GPU architecture in order to train. My repeated attempts at training the model has resulted in memory exceptions, machine crashing for various reasons. Is the trained summarisation model available so can make use of the summarization model without the need for training? The summarization model is trained using the not free Gigaword dataset, if the trained model is not available from Google is this a factor in reason why ?
So as far as I can tell, no one has put the trained model out there that is referenced. I too was originally running into memory issues on my macbook pro and eventually ended up using my gaming laptop which had a much better GPU.
The other option of course is to take advantage of AWS and use something like their g2.2xlarge instance. They also have their P2 instances as well, but I have not checked that out yet.
With regards to the Gigaword dataset, it simply comes down to licensing. It is not a free license from LDC and often many of the academics working on this have the dataset provided to them via their Universities or companies. I have not had luck finding it, however LDC did get back to me and advised that they do have other article datasets that have a pricetag of around $300 which is much more reasonable for those of use just trying to learn TF. That said, if you didn't want to buy anything, you can always write your own page scraper and format the data for the textsum model. https://github.com/tensorflow/models/pull/379/files
Hope this helps some. Good luck!