How can I profile TensorFlow models? I want at least to find ways to make the model faster, see how much GPU load I have, and how much GPU memory is consumed.
There are two ways to profile models. One way is a tensorboard. Here is a comprehensive tutorial about it and here is a good video.
Additionally, clicking on a node will display the exact total memory,
compute time, and tensor output sizes.
Another way is tensorflow debugger, which also has tutorials.
Related
I want to track the usage of the above resources while training a model with pyspark. Is there any built in method from colab, I have purchased colab pro, in order to store those numbers in a txt file? The goal is to train a model to predict these values, so we need a big amount of data, so monitoring by the graphs on the right hand side is not an option.
I have also tried using wandb, but couldn't make sense of it, so if someone has a tutorial i would be grateful.
I have images of unique products that are used at my workplace. I can't imagine that the inception database already has similar items that it has been trained on.
I tried to train a model using YOLO. It was taking a very very long time. Maybe 7minutes between epochs; and I wanted to do 1000 epochs due to small data size.
I used tiny-yolov2-voc cfg/weight on 1.0 GPU. I had a video of the item but i broke it up into frames so i could annotate. I then attempted to train on the images (not video). The products are healthcare related. Basically anything that a hospital would use.
Ive also used the inception method on images I got from Google. I noticed that inception method was very fast and resulted in accurate predictions. However, i'm worried that my images are too unique for inception to work.
Which method is best to use?
If you recommend YOLO, can you please provide suggestions on how to speed up the training phase?
If you recommend inception, can you please provide an explanation why it would work on unique images? I guess i'm having trouble understanding how inception knows which item i'm trying to train on without me providing annotations.
Thanks in advance
Just my impression (no recommendation or even related experience)
Having a look at the Hardware recommendations related to darknet a assumption is that you might stock up your own hardware to get faster results.
I read about the currently three different versions of YOLO and expect there are lot's of GFLOPS training included if you download the recommended files, but if the models never fit to your products then for you they never might be very helpful.
I must admit I've neither been active with YOLO nor with Tensorflow, so my impression might not be helpful at all.
If you see some videos of YOLO you can remark that sometimes a camel is labeled with horse and the accuracy seems being bad but it depends on the threshold that is applied to the images, so the videos look amazing as it seems the recognition is done so fast but with higher accuracy the process would slow down - also depending on the trained motives.
They never hide it though, they explain on an image where a dog is labeled as cow and a horse as sheep (Version 2) that in combination with darknet it's getting much faster but less accurate too, so usage of darknet is an important aspect too.
The information about details seems being quite bad on the websites of YOLO, they present it more like you'd do with a popstar, in comparison the website of Tensorflow looks more academic and is informing about the mathematics behind the framework.
Concerning Tensorflow I don't know about the hardware-recommendations, but as you wrote your results are useful, probably they are a bit or even much less.
My impression is that YOLO is primary intended for real-time detection in (live-)videos and needs much training for high accuracy. So depending on your use-case it might be right but you'd to invest in hardware probably for professional usage.
This is not an opinion against Tensorflow but that I had to verify more and it seems taking more time to get an impression. Concerning Tensorflow in the moment I even can't say if it can be used for real-time-detection, how accurate it is then and if the results are then still better then those of YOLO.
My assumption is that concerning both solutions it's a matter of involved elements (like the decision if to include darknet for speed), configuration, training and adjustments. Probably there is always something to increase in speed and accuracy, so investing in a system for recognition won't be static process with fixed end in timeline, but a steady process.
This is just a short overview of my impressions, I've never any experience with any recognition-software and hardly recommend that you make any decision based on my words.
Just if you want to do use any recognition software professional, especially for real-time-recognition, then you've to invest in hardware probably.
To my understanding of your problem you need you need inception with the capability of identifying your unique images. In this circumstance you can use transfer-learning on the inception model. With transfer-learning you can still train inception your own pictures while retaining the previous knowledge of inception.
More on transfer-learning
This is a newbie question for the tensorflow experts:
I reading lot of data from power transformer connected to an array of solar panels using arduinos, my question is can I use tensorflow to predict the power generation in future.
I am completely new to tensorflow, if can point me to something similar I can start with that or any github repo which is doing similar predictive modeling.
Edit: Kyle pointed me to the MNIST data, which I believe is a Image Dataset. Again, not sure if tensorflow is the right computation library for this problem or does it only work on Image datasets?
thanks, Rajesh
Surely you can use tensorflow to solve your problem.
TensorFlowâ„¢ is an open source software library for numerical
computation using data flow graphs.
So it works not only on Image dataset but also others. Don't worry about this.
And about prediction, first you need to train a model(such as linear regression) on you dataset, then predict. The tutorial code can be found in tensorflow homepage .
Get your hand dirty, you will find it works on your dataset.
Good luck.
You can absolutely use TensorFlow to predict time series. There are plenty of examples out there, like this one. And this is a really interesting one on using RNN to predict basketball trajectories.
In general, TF is a very flexible platform for solving problems with machine learning. You can create any kind of network you can think of in it, and train that network to act as a model for your process. Depending on what kind of costs you define and how you train it, you can build a network to classify data into categories, predict a time series forward a number of steps, and other cool stuff.
There is, sadly, no short answer for how to do this, but that's just because the possibilities are endless! Have fun!
I have just started experimenting with Deep Learning and Computer Vision technologies. I came across this awesome tutorial. I have setup the TensorFlow environment using docker and trained my own sets of objects and it provided greater accuracy when I tested it out.
Now I want to make the same more real-time. For example, instead of giving an image of an object as the input, I want to utilize a webcam and make it recognize the object with the help of TensorFlow. Can you guys guide me with the right place to start with this work?
You may want to look at TensorFlow Serving so that you can decouple compute from sensors (and distribute the computation), or our C++ api. Beyond that, tensorflow was written emphasizing throughput rather than latency, so batch samples as much as you can. You don't need to run tensorflow at every frame, so input from a webcam should definitely be in the realm of possibilities. Making the network smaller, and buying better hardware are popular options.
The tensorflow text summarization model as described here https://github.com/tensorflow/models/tree/master/textsum requires a multi GPU architecture in order to train. My repeated attempts at training the model has resulted in memory exceptions, machine crashing for various reasons. Is the trained summarisation model available so can make use of the summarization model without the need for training? The summarization model is trained using the not free Gigaword dataset, if the trained model is not available from Google is this a factor in reason why ?
So as far as I can tell, no one has put the trained model out there that is referenced. I too was originally running into memory issues on my macbook pro and eventually ended up using my gaming laptop which had a much better GPU.
The other option of course is to take advantage of AWS and use something like their g2.2xlarge instance. They also have their P2 instances as well, but I have not checked that out yet.
With regards to the Gigaword dataset, it simply comes down to licensing. It is not a free license from LDC and often many of the academics working on this have the dataset provided to them via their Universities or companies. I have not had luck finding it, however LDC did get back to me and advised that they do have other article datasets that have a pricetag of around $300 which is much more reasonable for those of use just trying to learn TF. That said, if you didn't want to buy anything, you can always write your own page scraper and format the data for the textsum model. https://github.com/tensorflow/models/pull/379/files
Hope this helps some. Good luck!