Kotlin static factory method with generics - kotlin

Found something similar with what I want to achieve for java - java generics and static methods also implementing factory pattern with generics in java from baeldung.
In my case, I also want to have the factory as a static method, but not sure how to achieve it in Kotlin, or maybe the whole concept is wrong.
Shortly, there are certain types of Notifiers, each should handle a certain NotificationInput type. Basically they are also some kind of builders as they build up the Notification object from the input.
Considering the setup below, I get Type mismatch. Required: Notifier<T> Found: DebugNotifier (same for the other Notifier implementations).
interface Notifier<T> {
fun issue(p: NotificationInput<T>): Notification
companion object {
fun <T> getNotifier(p: NotifierParameter): Notifier<T> = when(p.type){
"0" -> DebugNotifier()
"1" -> InfoNotifier()
"2" -> ErrorNotifier()
}
}
class DebugNotifier: Notifier<Debug>{
override fun issue(p: NotificationInput<Debug>): Notification{
return Notification(
somField = p.someDebugFieldValue
)
}
}
data class NotificationInput<T>(
val data: T
)
This is how I plan to call it: Notifier.getNotifier<Debug>(notifierParameter).issue(notificationInput)
How can this be achieved, or what would be a better configuration?

As #broot already explained, the caller has control over 2 things here: the type argument T and the NotifierParameter argument, so the API is kinda broken because the caller could do:
Notifier.getNotifier<Debug>(NotifierParameter("2"))
What would you expect to happen here?
There are too many degrees of freedom in the inputs of getNotifier(), so the compiler cannot allow you to return ErrorNotifier() when you receive "2", because someone could pass <Debug> as type argument.
You cannot compare this kind of API with Java, because Java's generics are broken and allow things that don't make sense.

Related

Get Kotlin class from string a call a method in it

I have 2 simple classes in kotlin
package com.sample.repo
class SampleClassA() {
fun test(): String {
return "Do things A way"
}
}
package com.sample.repo
class SampleClassB() {
fun test(): String {
return "Do things B way"
}
}
Now i have a configuration file that tells me which class to use.
Let's say i have a string
val className = "SampleClassA" // assuming all classes are in same package
I want obtain this class and invoke the test function in it
I was able to do below
fun `some random test`() {
val className = "SampleClassA"
val packageName = "com.sample.repo"
val kClass = Class.forName("$packageName.$className").kotlin
val method = kClass.members.find { it.name == "test" }
// How do i call this method ??
}
}
You should create an object of the class and then call method on it.
Example:
//...code from your example
val method = kClass.members.find { it.name == "test" }!!
val obj = kClass.primaryConstructor?.call()
val result = method.call(obj)
println(result)
I wouldn't do it that way. Instead, I'd require that the classes you're choosing between implement some common interface, which you can then refer to directly. For example:
interface Testable {
fun test(): String
}
 
package com.sample.repo
class SampleClassA() : Testable {
override fun test() = "Do things A way"
}
 
package com.sample.repo
class SampleClassB() : Testable {
override fun test() = "Do things B way"
}
 
fun `some random test`() {
val className = "SampleClassA"
val packageName = "com.sample.repo"
val testable = Class.forName("$packageName.$className").kotlin
.createInstance() as Testable
testable.test()
}
I don't know if this applies to OP, but judging from some of the questions asked here on StackOverflow, many people are coming to Kotlin from weakly-typed languages where it's common to use ‘string typing’ to fudge the lines between types, to assume that developers can always be trusted, and that it's fine to discover problems only at runtime. Of course, it's only natural to try to apply the patterns and techniques you're familiar with when learning a new language.
But while that style of programming is possible in Kotlin (using reflection), it's rarely a good fit. If you'll excuse one of my standard rants, reflection is slow, ugly, fragile, insecure, and hard to maintain; it's easy to get wrong, and forces you to handle most errors at runtime. Don't get me wrong: reflection is a very valuable tool, and there are situations where it's vital, such as writing frameworks, plug-ins, some forms of dependency injection, build tools, and similar. But reflection should be a tool of last resort — for general application coding, there's almost always a better approach, usually one that's more concise, easier to read, performs better, spots more problems at compile-time, can be autocompleted in your IDE, and works with the language and its type system, not against it.
Kotlin is a strongly-typed language; it has a fairly sophisticated type system (and type inference, so you don't need to keep repeating yourself), which is safer and smarter, turns many errors into compile-time errors, allows many optimisations, and is effectively self-documenting (making more explicit the contract between called code and its callers). It's better to try to work with the type system when you can, rather than subvert if (which is what reflection does).
The example above uses reflection to create an instance of a class which is assumed to implement the Testable interface (and will give ugly errors at runtime if the class isn't available, doesn't implement that interface, or doesn't have a public constructor with no required params), but after that uses normal, typed code which is much safer.
(In fact, depending how your test code is structured, you might find a way to configure it with Testable instances rather than String classnames, and avoid reflection altogether. That would be simpler and safer still.)

Kotlin Interface method abstraction

I'm exploring the Substitution principal and from what I've understood about the principal is that a sub type of any super type should be passable into a function/class. Using this idea in a new section of code that I'm writing, I wanted to implement a abstract interface for a Filter like so
interface Filter {
fun filter(): Boolean
}
I would then imagine that this creates the contract for all classes that inherit this interface that they must implement the function filter and return a boolean output. Now my interpretation of this is that the input doesn't need to be specified. I would like it that way as I want a filter interface that guarantee the implementation of a filter method with a guarantee of a return type boolean. Does this concept even exists in Kotlin? I would then expect to implement this interface like so
class LocationFilter {
companion object : Filter {
override fun filter(coord1: Coordinate, coord2: Coordinate): Boolean {
TODO("Some business logic here")
}
}
}
But in reality this doesn't work. I could remove remove the filter method from the interface but that just defeats the point of the whole exercise. I have tried using varargs but again that's not resolving the issue as each override must implement varargs which is just not helpful. I know this may seem redundant, but is there a possibility to have the type of abstraction that I'm asking for? Or am I missing a point of an Interface?
Let's think about it a little. The main point of abstraction is that we can use Filter no matter what is the implementation. We don't need to know implementations, we only need to know interfaces. But how could we use Filter if we don't know what data has to be provided to filter? We would need to use LocationFilter directly which also defeats the point of creating an interface.
Your problem isn't really related to Kotlin, but to OOP in general. In most languages it is solved by generics/templates/parameterized types. It means that an interface/class is parameterized by another type. You use it in Kotlin like this:
interface Filter<in T> {
fun filter(value: T): Boolean
}
object LocationFilter : Filter<Coordinate> {
override fun filter(value: Coordinate): Boolean {
TODO()
}
}
fun acquireCoordinateFilter(): Filter<Coordinate> = LocationFilter
fun main() {
val coord: Coordinate = TODO()
val filter: Filter<Coordinate> = acquireCoordinateFilter()
val result = filter.filter(coord)
}
Filter is parameterized, meaning that we can have a filter for filtering strings (type is: Filter<String>), for filtering integers (Filter<Int>) or for filtering coordinates (Filter<Coordinate>). Then we can't use e.g. Filter<String> to filter integers.
Note that the code in main() does not use LocationFilter directly, it only knows how to acquire Filter<Coordinate>, but the specific implementation is abstracted from it.
Also note there is already a very similar interface in Java stdlib. It is called Predicate.
my interpretation of this is that the input doesn't need to be specified.
Where did you get that interpretation from?
You can see that it can't be correct, by looking at how the method would be called.  You should be able to write code that works for any instance of Filter — and that can only happen if the number and type of argument(s) is specified in the interface.  To use your example:
val f: Filter = someMethodReturningAFilterInstance()
val result = f.filter(coord1, coord2)
could only work if all implementations used two Coordinate parameters. If some used one String param, and others used nothing at all, then how would you call it safely?
There are a few workarounds you could use.
If every implementation takes the same number of parameters, then you could make the interface generic, with type parameter(s), e.g.:
interface Filter<T1, T2> {
fun filter(t1: T1, t2: T2): Boolean
}
Then it's up to the implementation to specify which types are needed.  However, the calling code either needs to know the types of the particular implementation, or needs to be generic itself, or the interface needs to provide type bounds with in variance.
Or if you need a variable number of parameters, you could bundle them up into a single object and pass that.  However, you'd probably need an interface for that type, in order to handle the different numbers and types of parameters, and/or make that type a type parameter on Filter — all of which smells pretty bad.
Ultimately, I suspect you need to think about how your interface is going to be used, and in particular how its method is going to be called.  If you're only ever going to call it when the caller knows the implementation type, then there's probably no point trying to specify that method in the interface (and maybe no point having the interface at all).  Or if you'll want to handle Filter instances without knowing their concrete type, then look at how you'll want to make those calls.
The whole this is wrong!
First, OOP is a declarative concept, but in your example the type Filter is just a procedure wrapped in an object. And this is completely wrong.
Why do you need this type Filter? I assume you need to get a collection filtered, so why not create a new object that accepts an existing collection and represents it filtered.
class Filtered<T>(private val origin: Iterable<T>) : Iterable<T> {
override fun iterator(): Iterator<T> {
TODO("Filter the original iterable and return it")
}
}
Then in your code, anywhere you can pass an Iterable and you want it to be filtered, you simply wrap this original iterable (any List, Array or Collection) with the class Filtered like so
acceptCollection(Filtered(listOf(1, 2, 3, 4)))
You can also pass a second argument into the Filtered and call it, for example, predicate, which is a lambda that accepts an element of the iterable and returns Boolean.
class Filtered<T>(private val origin: Iterable<T>, private val predicate: (T) -> Boolean) : Iterable<T> {
override fun iterator(): Iterator<T> {
TODO("Filter the original iterable and return it")
}
}
Then use it like:
val oddOnly = Filtered(
listOf(1, 2, 3, 4),
{ it % 2 == 1 }
)

Confusing Property Delegation in Gradle's Kotlin DSL

Below is the code snippet that I came across in gradle's documentation
https://docs.gradle.org/current/userguide/tutorial_using_tasks.html
val hello by tasks.registering {
doLast {
println("Hello Earth")
}
}
hello {
doFirst {
println("Hello Venus")
}
}
In the above, hello is a TaskProvider type which provides task definition/action. The second call to hello is to extend the behavior of the task.
This delegate use looks slightly confusing to me. Following are the questions which are bugging me:
1) On inspecting the decompiled byte-code, I see tasks.registering returns RegisteringDomainObjectDelegateProviderWithAction object which should be used as the delegate and hence should provide getValue() and setValue() methods for delegate to work but as I saw, methods are not provided. Instead the class RegisteringDomainObjectDelegateProviderWithAction has a delegateProvider property of type tasks which is supposed to provide the delegate. Can any one help me understand, how delegation works here?
2) The second call is supposed to add behavior to the hello task. Since hello is a property, how are we able to pass a lambda/behavior to it? What am I missing?
I have already seen kotlin documentation which provides good explanation of delegates but doesn't aid in understanding the above case https://kotlinlang.org/docs/reference/delegated-properties.html
I would appreciate a detailed explanation as I am new to Kotlin.
Regarding the delegate use:
The delegation works via an extension operator method provideDelegate defined on RegisteringDomainObjectDelegateProviderWithAction:
operator fun RegisteringDomainObjectDelegateProviderWithAction<out TaskContainer, Task>.provideDelegate(
receiver: Any?,
property: KProperty<*>
) = ExistingDomainObjectDelegate.of(
delegateProvider.register(property.name, action)
)
The provideDelegate operator allows for more complex logic in delegate creation. As per the docs:
By defining the provideDelegate operator you can extend the logic of creating the object to which the property implementation is delegated. If the object used on the right hand side of by defines provideDelegate as a member or extension function, that function will be called to create the property delegate instance.
Regarding the "passing a lambda to a property":
This is implemented via overloading of the invoke operator as an extension function on the TaskProvider class:
operator fun <T> NamedDomainObjectProvider<T>.invoke(action: T.() -> Unit) =
configure(action)
Basically, the call hello { /* your lambda */ } is desugared into hello.invoke { /* your lambda */ }.

Generic constraint for "data" class objects

I would like to semantically constrain a map to only accept "data" class object types as the value in kotlin like so:
class Test(
val test : Int
)
data class Test2 (
val test : Int
)
fun test(map : Map<String, /* compile error on Test, but accept Test2 or any other data class */>) {
}
I'm mainly trying to do this so that I can keep everything in the map cloneable, but when I do this:
fun <T: Cloneable> test(map : Map<String, T>) {
// test clone
map.map { it.key.uuid to it.value.clone() } .toMap() // error on .clone() Cannot access 'clone': it is protected in 'Cloneable'
}
but I thought implementing the Cloneable interface made your clone method public? Essentially I'm looking for a compile time guarantee that all data is copyable in that method invocation, (is a primitive type, a data class that I can call .copy() on, or any object that has implemented Cloneable). Is my only option reflection and runtime assertions?
I thought implementing the Cloneable interface made your clone method public?
No, it's simply a marker interface, which tells the protected Object.clone() method not to throw a CloneNotSupportedException.  In practice, classes that implement Cloneable will usually override clone() and make it public, but that's not necessary.  And of course that's no help when you don't know the exact type!
The cloning mechanism was an early part of Java, and not very well-designed.  (Effective Java calls it “a highly atypical use of interfaces and not one to be emulated”.)  But it's still used, so we're stuck with it…
(See also these related answers.)
I don't know whether this is the best way or not, but how about you to use property like below.
SomeClass::class.isData
Kdoc says
true if this class is a data class.

Using Fuel's responseObject with a generic call site

I've a problem using Fuel's responseObject in a generic fashion. I'm trying to develop a centralized method with components getting their HTTP response object already deserialized, ready to go. It looks like this:
class Controller(private val url: String) {
fun <T> call(endpoint: String): T {
return "$url/$endpoint".httpGet().responseObject<T>()
}
}
class App(private val controller: Controller) {
fun getModel() {
val model = controller.call<AppModel>("model")
// use model
}
}
Of course, Controller.call would handle errors, and add common request parameters. The deserialization from JSON is supposed to be handled by Jackson (AppModel is a simple data class Jackson should pick up automatically), so I'm working with fuel-jackson:1.12.0 as an added dependency.
Now, using Kotlin-1.2.21, I get this compiler error:
Error:(35, 97) Kotlin: Cannot use 'T' as reified type parameter. Use a class instead.
How do I work around this, perhaps by switching to a different Fuel method?
I've considered making call inline (to reify T), but this defeats the purpose of having a private val url.
I don't think there's a simple workaround to this problem.
First, there's no way to call a Kotlin inline function with a reified type parameter without either using a concrete type or propagating the type argument through a chain of generic calls to inline functions, so you have to call .httpGet().responseObject<T>() from an inline function and use a reified type parameter as T.
Next, there's a reason for the restrictions on what an inline function can access. Basically, allowing inline functions to access non-public API would sometimes break binary compatibility. This is described in the docs here.
What you can do is, as suggested in the docs, make private val url: String a #PublishedApi internal val and, accordingly, go on with inline fun <reified T> call(...).
If you are worried about url becoming effectively public, you might want to take a look at this Q&A suggesting a workaround with #JvmSynthetic.