Cannot find gtk/gtk.h when building nativefiledialog on Fedora 37 - cmake

I am using nativefiledialog-cmake in my C++ project as a submodule. When I generate the build files using CMake, it does not generate properly as it cannot find the gtk/gtk.h file needed for one of nativefiledialog's source files : nfd_gtk.c.
I have installed the following GTK and GTK dependency packages:
gtk2
gtk3
gtk4
gtk2-devel
gtk3-devel
gtk4-devel
gtk4-devel-tools
glib
glib-devel
gdk-pixbuf2-devel
atk
atk-devel
gobject-introspection
gobject-introspection-devel
libepoxy
libepoxy-devel
and ls /usr/include | grep gtk returns
gtk-2.0
gtk-3.0
gtk-4.0
gtk-unix-print-2.0
The GTK headers are inside these folders.
This is nativefiledialog-cmake's CMakeLists.txt file:
include(CheckIncludeFile)
set(SOURCES src/nfd_common.c)
macro(REQUIRE_INCLUDE_FILE path name)
CHECK_INCLUDE_FILE(${path} ${name})
if (NOT ${name})
message(FATAL_ERROR "${path} not found")
endif ()
endmacro()
# add specific implementations
if (WIN32)
REQUIRE_INCLUDE_FILE(windows.h HAS_WINDOWS)
list(APPEND SOURCES src/nfd_win.cpp)
elseif (APPLE)
REQUIRE_INCLUDE_FILE(AppKit/AppKit.h HAS_APPKIT)
list(APPEND SOURCES src/nfd_cocoa.m)
elseif (UNIX)
REQUIRE_INCLUDE_FILE(gtk/gtk.h HAS_GTK)
list(APPEND SOURCES src/nfd_gtk.c)
elseif (UNIX)
message(FATAL_ERROR "Cannot detect your system, please report to https://github.com/aarcangeli/nativefiledialog-cmake/issues")
endif ()
add_library(nativefiledialog ${SOURCES})
target_include_directories(nativefiledialog PUBLIC src/include)
I have tried adding this line (returned from pkg-config --cflags gtk+-3.0) to tell the compiler where the GTK headers are located with no avail:
set(FLAGS "${FLAGS} -I/usr/include/gtk-3.0 -I/usr/include/pango-1.0 -I/usr/include/glib-2.0 -I/usr/lib64/glib-2.0/include -I/usr/include/sysprof-4 -I/usr/include/harfbuzz -I/usr/include/freetype2 -I/usr/include/libpng16 -I/usr/include/libmount -I/usr/include/blkid -I/usr/include/fribidi -I/usr/include/libxml2 -I/usr/include/cairo -I/usr/include/pixman-1 -I/usr/include/gdk-pixbuf-2.0 -I/usr/include/gio-unix-2.0 -I/usr/include/cloudproviders -I/usr/include/atk-1.0 -I/usr/include/at-spi2-atk/2.0 -I/usr/include/dbus-1.0 -I/usr/lib64/dbus-1.0/include -I/usr/include/at-spi-2.0 -pthread")
How do I get CMake to generate properly?

First of all I am quite not sure how you arrived at the set(FLAGS "${FLAGS} ...") line, because unless you've specified some additional logic, that just creates a variable FLAGS, it is not a standard CMake variable IIRC.
Perhaps what you meant to use was target_compile_options(), where you can specify additional compile options to a given target which in your case is most likely nativefiledialog. That might fix your issue i.e.:
target_compile_options(nativefiledialog PUBLIC "$<$<CONFIG:DEBUG>:${DEBUG_FLAGS}>")
target_compile_options(nativefiledialog PUBLIC "$<$<CONFIG:RELEASE>:${RELEASE_FLAGS}>")
Or in your case:
target_compile_options(nativefiledialog PUBLIC "${FLAGS}")
This however is not good practice and I would recommend rewriting nativefiledialog's CMakeLists.txt.
Bare in mind that this is in no way your fault, the nativefiledialog has a very bad CMakeLists.txt because the author didn't use any prebuild CMake functionalities like find_package(GTK).

Related

change "Requesting program interpreter: /lib64/ld-linux-x86-64.so.2" to a customized one through cmake [duplicate]

I am using the arm-linux-androideabi-g++ compiler. When I try to compile a simple "Hello, World!" program it compiles fine. When I test it by adding a simple exception handling in that code it works too (after adding -fexceptions .. I guess it is disabled by default).
This is for an Android device, and I only want to use CMake, not ndk-build.
For example - first.cpp
#include <iostream>
using namespace std;
int main()
{
try
{
}
catch (...)
{
}
return 0;
}
./arm-linux-androideadi-g++ -o first-test first.cpp -fexceptions
It works with no problem...
The problem ... I am trying to compile the file with a CMake file.
I want to add the -fexceptions as a flag. I tried with
set (CMAKE_EXE_LINKER_FLAGS -fexceptions ) or set (CMAKE_EXE_LINKER_FLAGS "fexceptions" )
and
set ( CMAKE_C_FLAGS "fexceptions")
It still displays an error.
Note: Given CMake evolution since this was answer was written in 2012, most of the suggestions here are now outdated/deprecated and have better alternatives.
Suppose you want to add those flags (better to declare them in a constant):
SET(GCC_COVERAGE_COMPILE_FLAGS "-fprofile-arcs -ftest-coverage")
SET(GCC_COVERAGE_LINK_FLAGS "-lgcov")
There are several ways to add them:
The easiest one (not clean, but easy and convenient, and works only for compile flags, C & C++ at once):
add_definitions(${GCC_COVERAGE_COMPILE_FLAGS})
Appending to corresponding CMake variables:
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${GCC_COVERAGE_COMPILE_FLAGS}")
SET(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} ${GCC_COVERAGE_LINK_FLAGS}")
Using target properties, cf. doc CMake compile flag target property and need to know the target name.
get_target_property(TEMP ${THE_TARGET} COMPILE_FLAGS)
if(TEMP STREQUAL "TEMP-NOTFOUND")
SET(TEMP "") # Set to empty string
else()
SET(TEMP "${TEMP} ") # A space to cleanly separate from existing content
endif()
# Append our values
SET(TEMP "${TEMP}${GCC_COVERAGE_COMPILE_FLAGS}" )
set_target_properties(${THE_TARGET} PROPERTIES COMPILE_FLAGS ${TEMP} )
Right now I use method 2.
In newer versions of CMake you can set compiler and linker flags for a single target with target_compile_options and target_link_libraries respectively (yes, the latter sets linker options too):
target_compile_options(first-test PRIVATE -fexceptions)
The advantage of this method is that you can control propagation of options to other targets that depend on this one via PUBLIC and PRIVATE.
As of CMake 3.13 you can also use target_link_options to add linker options which makes the intent more clear.
Try setting the variable CMAKE_CXX_FLAGS instead of CMAKE_C_FLAGS:
set (CMAKE_CXX_FLAGS "-fexceptions")
The variable CMAKE_C_FLAGS only affects the C compiler, but you are compiling C++ code.
Adding the flag to CMAKE_EXE_LINKER_FLAGS is redundant.
The preferred way to specify toolchain-specific options is using CMake's toolchain facility. This ensures that there is a clean division between:
instructions on how to organise source files into targets -- expressed in CMakeLists.txt files, entirely toolchain-agnostic; and
details of how certain toolchains should be configured -- separated into CMake script files, extensible by future users of your project, scalable.
Ideally, there should be no compiler/linker flags in your CMakeLists.txt files -- even within if/endif blocks. And your program should build for the native platform with the default toolchain (e.g. GCC on GNU/Linux or MSVC on Windows) without any additional flags.
Steps to add a toolchain:
Create a file, e.g. arm-linux-androideadi-gcc.cmake with global toolchain settings:
set(CMAKE_CXX_COMPILER arm-linux-gnueabihf-g++)
set(CMAKE_CXX_FLAGS_INIT "-fexceptions")
(You can find an example Linux cross-compiling toolchain file here.)
When you want to generate a build system with this toolchain, specify the CMAKE_TOOLCHAIN_FILE parameter on the command line:
mkdir android-arm-build && cd android-arm-build
cmake -DCMAKE_TOOLCHAIN_FILE=$(pwd)/../arm-linux-androideadi-gcc.cmake ..
(Note: you cannot use a relative path.)
Build as normal:
cmake --build .
Toolchain files make cross-compilation easier, but they have other uses:
Hardened diagnostics for your unit tests.
set(CMAKE_CXX_FLAGS_INIT "-Werror -Wall -Wextra -Wpedantic")
Tricky-to-configure development tools.
# toolchain file for use with gcov
set(CMAKE_CXX_FLAGS_INIT "--coverage -fno-exceptions -g")
Enhanced safety checks.
# toolchain file for use with gdb
set(CMAKE_CXX_FLAGS_DEBUG_INIT "-fsanitize=address,undefined -fsanitize-undefined-trap-on-error")
set(CMAKE_EXE_LINKER_FLAGS_INIT "-fsanitize=address,undefined -static-libasan")
You can also add linker flags to a specific target using the LINK_FLAGS property:
set_property(TARGET ${target} APPEND_STRING PROPERTY LINK_FLAGS " ${flag}")
If you want to propagate this change to other targets, you can create a dummy target to link to.
This worked for me when I needed a precompile definition named "NO_DEBUG":
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++14 -DNO_DEBUG")
Then from code
#ifdef NO_DEBUG
.....
With CMake 3.4+, APPEND can be used with the string command to add flags.
string(APPEND CMAKE_EXE_LINKER_FLAGS " -fexceptions")

How to find static version of zlib in CMake?

I'm on cmake version 3.12.1 and want to build a static executable that uses ZLIB. I have both the static (libz.a) and shared (libz.so) libraries on my machine. How can I tell find_package(ZLIB) to return the static version? Maybe there's another way to find libz.a as well?
My present workaround is to specify:
SET(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -static")
Then:
target_link_libraries (my_binary z lib1 lib2)
Critique on this approach is also welcome!
As of CMake 3.24, use: set(ZLIB_USE_STATIC_LIBS "ON")
Source
Your approach is valid given the limitations of the CMake module called by find_package(ZLIB), specifically FindZLIB.cmake. While other FindXXX.cmake modules have a special option for grabbing static libraries, the zlib module does not.
There are already a few questions on SO about this topic, but some are older than others, so there are a few options.
You can instead apply the -static flag on a more granular level (rather than editing the global CMAKE_EXE_LINKER_FLAGS variable) by adding it to your target_link_libraries call. This way it will apply only to that target -- useful if you are building other non-static targets.
You could also tell CMake to search for static libraries explicitly by setting CMAKE_FIND_LIBRARY_SUFFIXES. When find_package is called, CMake can search for libraries ending in .a using this:
SET(CMAKE_FIND_LIBRARY_SUFFIXES ".a")
find_package(ZLIB REQUIRED)
If you have control over installing zlib, for example, you are installing dependencies in a Continuous Integration setup, I would recommend to just remove the zlib dynamic library.
zlib doesn't have the option to build statically or dynamically, it automatically generates both versions. However FindZlib.cmake prioritizes the dynamic version.
I find the following approach to be better in case you don't have access to modify third parties repositories CMakeLists.txt that needs zlib:
if (CMAKE_CXX_COMPILER_ID STREQUAL "MSVC")
set(_compiler_is_msvc ON)
endif()
option(ZLIB_FORCE_STATIC "Remove the dynamic libraries after zlib install" ON)
mark_as_advanced(ZLIB_FORCE_STATIC)
set(OUTPUT_BUILD_DIR ${CMAKE_CURRENT_BINARY_DIR} CACHE PATH "Base folder where builds and source folder will be installed: i.e. OUTPUT_BUILD_DIR/zlib")
if(_compiler_is_msvc)
set(ZLIB_GIT_TAG cacf7f1d4e3d44d871b605da3b647f07d718623f) # Version 1.2.11
message(STATUS "ZLIB_VERSION: ${ZLIB_GIT_TAG} : Version 1.2.11")
set(ZLIB_BUILD_DIR ${OUTPUT_BUILD_DIR}/zlib-build)
set(ZLIB_INSTALL_DIR ${OUTPUT_BUILD_DIR}/zlib)
set(ZLIB_SRC_FOLDER_NAME zlib-src)
set(ZLIB_SRC_DIR ${OUTPUT_BUILD_DIR}/${ZLIB_SRC_FOLDER_NAME})
set(ZLIB_GIT_REPOSITORY "https://github.com/madler/zlib")
ExternalProject_Add(ep_zlib
GIT_REPOSITORY ${ZLIB_GIT_REPOSITORY}
GIT_TAG ${ZLIB_GIT_TAG}
# GIT_SHALLOW TRUE
GIT_PROGRESS TRUE
CMAKE_GENERATOR ${CMAKE_GENERATOR}
SOURCE_DIR ${ZLIB_SRC_DIR}
BINARY_DIR ${ZLIB_BUILD_DIR}
CMAKE_ARGS
-DCMAKE_C_COMPILER:FILEPATH=${CMAKE_C_COMPILER}
-DCMAKE_CXX_COMPILER:FILEPATH=${CMAKE_CXX_COMPILER}
-DCMAKE_BUILD_TYPE:STRING=${SGEXT_CMAKE_BUILD_TYPE}
-DBUILD_SHARED_LIBS:BOOL=OFF
-DCMAKE_INSTALL_PREFIX=${ZLIB_INSTALL_DIR}
)
if(ZLIB_FORCE_STATIC)
ExternalProject_Add_Step(
ep_zlib zlib_remove_dll
COMMENT "Remove zlib.lib and zlib.dll, leaves only zlibstatic.lib"
DEPENDEES install
COMMAND ${CMAKE_COMMAND} -E remove -f ${ZLIB_INSTALL_DIR}/lib/zlib.lib ${ZLIB_INSTALL_DIR}/bin/zlib.dll
)
endif()
endif()
The last step removes the dynamic version, so the default FindZLIB will find the static library.
The best solution I found was to name the library explicitly when calling CMake:
cmake -DZLIB_LIBRARY=/usr/lib/x86_64-linux-gnu/libz.a /path/to/source
I would not recommend the solution proposed by #phcerdan because in my case the installed shared library was colliding with an already installed version, so the only solution was to make sure it never gets installed in the first place. The key idea is to disable completely the targets installation using SKIP_INSTALL_LIBRARIES, and instead to "install" the static library manually. Nonetheless, my solution is quite similar:
EXTERNALPROJECT_ADD(zlib_external
GIT_REPOSITORY https://github.com/madler/zlib.git
GIT_TAG v1.2.11
CMAKE_ARGS
-DSKIP_INSTALL_FILES=ON # Disable install of manual and pkgconfig files
-DSKIP_INSTALL_LIBRARIES=ON # Do not install libraries automatically. It will be handled manually to avoid installing shared libs
-DBUILD_SHARED_LIBS=OFF
-DCMAKE_TOOLCHAIN_FILE=${CMAKE_TOOLCHAIN_FILE}
-DCMAKE_INSTALL_PREFIX:PATH=${CMAKE_INSTALL_PREFIX}
-DCMAKE_C_FLAGS:STRING=${CMAKE_COMPILE_FLAGS_EXTERNAL}
${EXTERNALPROJECT_BUILD_TYPE_CMD}
INSTALL_DIR ${CMAKE_INSTALL_PREFIX}
)
if(NOT WIN32)
set(zlib_BUILD_LIB_PATH "<BINARY_DIR>/libz.a")
set(zlib_PATH "${CMAKE_INSTALL_PREFIX}/lib/libz.a")
else()
set(zlib_BUILD_LIB_PATH "<BINARY_DIR>/Release/zlibstatic.lib")
set(zlib_PATH "${CMAKE_INSTALL_PREFIX}/lib/zlibstatic.lib")
endif()
ExternalProject_Add_Step(
zlib_external zlib_install_static_only
COMMENT "Manually installing only static library"
DEPENDEES install
COMMAND ${CMAKE_COMMAND} -E copy ${zlib_BUILD_LIB_PATH} ${zlib_PATH}
)

Clion, cMake and POCO

I'm a new guy to c++ and cmake here. I decided to test out cLion and cMake. I'm trying to write a simple email client for the command line. Other sources told me that the best way to implement a POP3 and SMTP functions would be to use POCO. Unfortunately, cMake is giving me trouble. The version that came with CLion is 3.2 but the version that my machine is running is 2.8.
~$ cmake --version
cmake version 2.8.12.2
First problem. I thought that I could bypass this by just installing POCO and doing the same thing that I used for openssl which I also had to download.
cMakeList.txt:
cmake_minimum_required(VERSION 3.0)
project(Email_Reader)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11")
#included paths for openssl and POCO.
INCLUDE_DIRECTORIES("/usr/include/openssl")
INCLUDE_DIRECTORIES("/usr/local/include/Poco/Net")
set(SOURCE_FILES main.cpp)
add_executable(Email_Reader ${SOURCE_FILES})
The documentation for POCO tells me that I need at least 3.0 to work but I feel I have 2 different cMakes on my machine. Can you help me, please?
You can get the latest CMake release from: http://www.cmake.org/download/
For Linux, it's this archive: http://www.cmake.org/files/v3.2/cmake-3.2.2.tar.gz
An easy way to use it is to put the extracted files in /opt/cmake/cmake-3.2 then create the following aliases (e.g. in ~/.bash_aliases:
alias ccmake3='/opt/cmake/cmake-3.2/bin/ccmake'
alias cmake3='/opt/cmake/cmake-3.2/bin/cmake'
alias cmake3-gui='/opt/cmake/cmake-3.2/bin/cmake-gui'
alias cpack3='/opt/cmake/cmake-3.2/bin/cpack'
alias ctest3='/opt/cmake/cmake-3.2/bin/ctest'
Then, make sure that you have properly built and installed POCO.
The Getting Started page has all the information you need for doing that. But, basically, you should get the sources from here and extract them somehwere:
wget http://pocoproject.org/releases/poco-1.6.0/poco-1.6.0.tar.gz
tar xvfz poco-1.6.0.tar.gz
cd poco-1.6.0
mkdir -p cmake_build cmake_install/debug cmake_install/release
cd cmake_build
cmake3-gui ..
In the CMake 3 GUI, press Configure. In the new window, keep the default option Unix Makefiles and click on Finish. An error message should appear (which is fine), click Ok.
To build the Debug version, set the following:
CMAKE_BUILD_TYPE : Debug
CMAKE_INSTALL_PREFIX : the absolute path to "cmake_install/debug"
To get you started quickly with POCO, unckeck all the options, except for the following, they have to be enabled:
ENABLE_JSON
ENABLE_NET
ENABLE_UTIL
ENABLE_XML
POCO_STATIC
(You can consider the other options later if you need to...)
Quit the GUI, then build/install POCO:
make clean
make -j8
make install
Now, POCO should be installed in cmake_install/debug. To build/install the other versions, just do the same procedure, but replace Debug in CMAKE_BUILD_TYPE with Release, RelWithDebInfo or MinSizeRel (cf. CMake's doc) (also, you'll have to change the install directories)
Finally, you can use POCO in you C++ projects.
For instance, your CMakeLists.txt should look like this:
cmake_minimum_required(VERSION 3.0)
project(Email_Reader)
# define the project
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11")
set(SOURCE_FILES main.cpp)
add_executable(Email_Reader ${SOURCE_FILES})
# set the POCO paths and libs
set(POCO_PREFIX "/path/to/cmake_install/debug") # the directory containing "include" and "lib"
set(POCO_INCLUDE_DIR "${POCO_PREFIX}/include")
set(POCO_LIB_DIR "${POCO_PREFIX}/lib")
set(POCO_LIBS "${POCO_LIB_DIR}/libPocoNetd.a"
"${POCO_LIB_DIR}/libPocoUtild.a"
"${POCO_LIB_DIR}/libPocoJSONd.a"
"${POCO_LIB_DIR}/libPocoXMLd.a"
"${POCO_LIB_DIR}/libPocoFoundationd.a"
"pthread")
# set the include path for the app
target_include_directories(Email_Reader PRIVATE "${POCO_INCLUDE_DIR}")
# link the app against POCO
target_link_libraries(Email_Reader "${POCO_LIBS}")
My CMakeLists.txt for using Poco looks like this:
cmake_minimum_required(VERSION 3.10.0)
project(MyProject VERSION 0.1.0)
find_package(Poco REQUIRED COMPONENTS Foundation Net Zip )
add_executable(my_exe main.cpp)
target_link_libraries(my_exe PUBLIC Poco::Foundation Poco::Zip Poco::Net)
This configuration automatically add the needed include directories and libraries.
The Foundation component is mandatory, it seems it provides the include directories.
Don't add Poco to target_link_libraries, the linker will then look for a 'Poco' library.

CMake executable location

I have a very simple directory structure:
Project
Project/src
Project/build
Source files are in Project/src, and I do the out-of-src build in Project/build. After running cmake ../ ; make, I can run the executable thusly: Project/build$ src/Executable - that is, the Executable is created in the build/src directory.
How do I set the location of the executable in the CMakeLists.txt file? I've attempted to follow some of the examples found at cmake.org, but the links that work don't seem to show this behaviour.
My Project/src/CMakeLists.txt file is listed here.
include_directories(${SBSProject_SOURCE_DIR}/src)
link_directories(${SBSProject_BINARY_DIR}/src)
set ( SBSProject_SOURCES
main.cpp
)
add_executable( TIOBlobs ${SBSProject_SOURCES})
And the top-level Project/CMakeLists.txt:
cmake_minimum_required (VERSION 2.6)
project (SBSProject)
set (CMAKE_CXX_FLAGS "-g3 -Wall -O0")
add_subdirectory(src)
You have a couple of choices.
To change the default location of executables, set CMAKE_RUNTIME_OUTPUT_DIRECTORY to the desired location. For example, if you add
set (CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR})
to your Project/CMakeLists.txt before the add_subdirectory command, your executable will end up in Project/build for Unix builds or build/<config type> for Win32 builds. For further details, run:
cmake --help-property RUNTIME_OUTPUT_DIRECTORY
Another option for a project of this size is to have just one CMakeLists.txt. You could more or less replace add_subdirectory(src) with the contents of Project/src/CMakeLists.txt to achieve the same output paths.
However, there are a couple of further issues.
You probably want to avoid using link_directories generally. For an explanation, run
cmake --help-command link_directories
Even if you do use link_directories, it's unlikely that any libraries will be found in ${SBSProject_BINARY_DIR}/src
Another issue is that the CMAKE_CXX_FLAGS apply to Unix builds, so should probably be wrapped in an if (UNIX) ... endif() block. Of course, if you're not planning on building on anything other than Unix, this is a non-issue.
Finally, I'd recommend requiring CMake 2.8 as a minimum unless you have to use 2.6 - CMake is an actively-developed project and the current version has many significant improvements over 2.6
So a single replacement for Project/CMakeLists.txt could look like:
cmake_minimum_required (VERSION 2.8)
project (SBSProject)
if (UNIX)
set (CMAKE_CXX_FLAGS "-g3 -Wall -O0")
endif ()
include_directories (${SBSProject_SOURCE_DIR}/src)
set (SBSProject_SOURCES
${SBSProject_SOURCE_DIR}/src/main.cpp
)
add_executable (TIOBlobs ${SBSProject_SOURCES})
Another way of relocating the executable file location is via set(EXECUTABLE_OUTPUT_PATH Dir_where_executable_program_is_located)
build/'config type' for Win32 builds.
For MSVC, to avoid the default "/Debug" created folder
set_target_properties(my_target
PROPERTIES
RUNTIME_OUTPUT_DIRECTORY_DEBUG ${CMAKE_CURRENT_BINARY_DIR})

CMake adding libraries for Windows/Linux

Visual Studio C++ 2008 / GCC 4.4.2
I have written a program to run on Linux and now I have to port my code to run on Windows. I have decided to use CMake as I want to keep the same build system for both platforms.
However, I need to link with some libraries for both platforms. In my CMakeLists.txt I have the following:
# Compile with gcc c89 standard
IF(CMAKE_COMPILER_IS_GNUCXX)
MESSAGE(STATUS "GCC detected - Adding compiler flags")
SET(CMAKE_C_FLAGS "-pthread -ggdb -Wextra -Wall -pedantic -std=c89")
ENDIF(CMAKE_COMPILER_IS_GNUCXX)
IF(WIN32)
SET(CMAKE_C_FLAGS "ws2_32.lib")
ENDIF(WIN32)
However, when I compile on Visual Studio I get the following error:
fatal error C1083: Cannot open source file: 'ws2_32.lib': No such file or directory
What can I do to resolve this problem?
========= Edit
In the top level directory
# Project Client Server
CMAKE_MINIMUM_REQUIRED(VERSION 2.6)
# Name of project
PROJECT(CLIENT_SERVER)
# Compile with gcc c89 standard
IF(CMAKE_COMPILER_IS_GNUCXX)
MESSAGE(STATUS "GCC detected - Adding compiler flags")
SET(CMAKE_C_FLAGS "-pthread -ggdb -Wextra -Wall -pedantic -std=c89")
ENDIF(CMAKE_COMPILER_IS_GNUCXX)
IF(WIN32)
SET(CMAKE_C_FLAGS "ws2_32")
ENDIF(WIN32)
# Includes
INCLUDE_DIRECTORIES(${CLIENT_SERVER_SOURCE_DIR}/cltsvr_ults)
INCLUDE_DIRECTORIES(${CLIENT_SERVER_SOURCE_DIR}/server)
INCLUDE_DIRECTORIES(${CLIENT_SERVER_SOURCE_DIR}/client)
# libraries
LINK_DIRECTORIES($CLIENT_SERVER/cltsvr_ults)
# Add subdirectories
ADD_SUBDIRECTORY(client)
ADD_SUBDIRECTORY(server)
ADD_SUBDIRECTORY(cltsvr_ults)
ADD_SUBDIRECTORY(test_client)
ADD_SUBDIRECTORY(test_server)
In the subdirectory of client I have this CMakeLists.txt
# libray called client from client.c
ADD_LIBRARY(client client)
And in the subdirectory of test_clt where I create and link my executable.
# Test client add executable
INCLUDE_DIRECTORIES($CLIENT_SERVER_SOURCE_DIR/client)
INCLUDE_DIRECTORIES($CLIENT_SERVER_SOURCE_DIR/cltsvr_ults)
# Link the library
LINK_DIRECTORIES($CLIENT_SERVER/client)
# Add the executable
ADD_EXECUTABLE(clt test_clt)
# Link the executable to the client library
IF(WIN32)
TARGET_LINK_LIBRARIES(clt client ws2_32)
ENDIF(WIN32)
Disclaimer: My answer is of philosophical nature which should encourage you to avoid touching CMAKE_C_FLAGS directly. For the direct answer that just solves your problem look what Bill ( the lead architect of the CMake btw. ) wrote.
The thing about CMake is, that it lets you describe what you want to do without referring to a specific compiler or platform. What CMake does is building the compiler and linker flags from your usage of
include_directories
add_definitions
add_library
add_executable
target_link_libraries
If there are no external dependencies, other than the compiler itself, this is all you need. For external dependencies use
find_package
It defines a set of variables, like
find_package(SDL)
defines
SDL_INCLUDE_DIR
SDL_LIBRARY
for usage with respectively include_directories and target_link_libraries. CMake ships with a bunch of so called module files, like FindSDL.cmake and many others can be googled.
The next lower level is to use
find_path
find_library
which are used in the Find???.cmake modules itself.
The CMAKE_C_FLAGS variable is composed by CMake from these commands. Modifying it means you bypass CMake. There are cases, like for special optimization flags, you want to do this, but at this point all power and thus responsibility transfered from CMake to you.
By adding ws2_32.lib to the C_FLAGS, you are using it at compile time, and not link time. If you look at the error message, you can see it it treating the file as if it were a c++ source file: Cannot open source file: 'ws2_32.lib'. target_link_libraries(target ws2_32) should work.
You need to use the Target Link Libraries command. The target would be the executable you're building.
EDIT: You shouldn't specify the libs you're linking against in C_FLAGS. You can do something like TARGET_LINK_LIBRARIES(execName, ws_32, ...). I'm not 100% sure if you need the .lib. Been a while since I used CMake.