Create Custom Loss Function to Minimize the Attitude Error - tensorflow

I want to use IMU (accelerometer and gyroscope) readings to compute the attitude via Neural Network. The input will be input_shape = (time steps, 6) and the output is in the quaternion form output_shape = (time steps,4).
Based on mathematical calculations the error between reference quaternion and the predicted quaternion is
y_pred[i,]=w0,x0,y0,z0
y_true[i,]=w1,x1,y1,z1
w = w0*w1 - x0*x1 - y0*y1 - z0*z1
x = w0*x1 + x0*w1 + y0*z1 - z0*y1
y = w0*y1 - x0*z1 + y0*w1 + z0*z1
z = w0*z1 + x0*y1 - y0*x1 + z0*w1
error_quaternion = [w, x, y, z]
To minimize the error, the scaler part of error quaternion (w) must be minimize. (please just ignore the math)
So to reach the best predication the w must be minimized (w is the shortest angle between the predicted and reference attitude) -
Ref = {Markley, F. Landis, and John L. Crassidis. Fundamentals of
spacecraft attitude determination and control. Vol. 1286. New York,
NY, USA:: Springer New York, 2014.}
I write this loss function
def LossQuat2(y_true, y_pred):
a, b = y_true.get_shape()
error = []
for i in range(a):
w0,x0,y0,z0 = tf.unstack(y_pred[i,])
w1,x1,y1,z1 = tf.unstack(y_true[i,])
x1 = -x1
y1 = -y1
z1 = -z1
w = w0*w1 - x0*x1 - y0*y1 - z0*z1
error.append(2*tf.math.acos(K.clip(tf.math.sqrt(w*w), -1., 1.)))
return tf.reduce_mean(error)
To validate it really calculate the error I try this code and the error calculated precisely
w0,x0,y0,z0 = y_pred[i,]
w1,x1,y1,z1 = y_true[i,]
x1 = -x1
y1 = -y1
z1 = -z1
w = w0*w1 - x0*x1 - y0*y1 - z0*z1
error = 2*math.acos(K.clip(np.sqrt(w*w), -1., 1.))
But after use this loss function to train the model, the output error is to much bigger than the MSE loss function. Also, it is too slow than MSE.
Why this loss function won't reduce the error correctly while mathematically it is correct?
How could I decrease the execution time of the loss function?
Is it true to use the for loop function? Is there any way to remove the for loop?
UPDATE:
Mathematics
Quaternion:
Quaternion is an attitude representation with 4 elements q=[w x y z]
w is the scalar part or real part
x y z are the vector part or imaginary part
Also, the quaternion could be written as:
q = [cos(theta/2) e*sin(theta/2)] , e is a unit vector (e=[i j k]
I intend to estimate the quaternion by the neural network
Quaternion Inverse
quaternion inverse or quaternion conjugate can be calculated by:
quaternion = [w x y z]
inverse(quaternion) = [w -x -y -z]
Quaternion Multiplication
To find the difference between the estimated attitude and the true(reference) attitude, estimated attitude(NN output) must be multiply by the quaternion reference using quaternion multiplication.
Quaternion multiplication:
q_m = q1 * inverse(q2)
or
q_m = q2 * inverse(q1)
both of them is the same.
If
q1=w0,x0,y0,z0
q2=w1,x1,y1,z1
Then q_m = [w x y z] and it could be calculated by:
w = w0*w1 - x0*x1 - y0*y1 - z0*z1
x = w0*x1 + x0*w1 + y0*z1 - z0*y1
y = w0*y1 - x0*z1 + y0*w1 + z0*z1
z = w0*z1 + x0*y1 - y0*x1 + z0*w1
The shortest angle between q1 and q2 is theta:
Theta = 2*acos(sqrt(w*w))
What I need is to write a loss function to minimize theta, if theta = 0, w will be equal to 1, so, the optimal q_m is:
q_m=[1 0 0 0]
Many thanks to david-harris #david-harris:
def loss(y_true, y_pred):
z = y_true * y_pred * tf.constant([[1., -1., -1., -1.]])
wtot = tf.reduce_sum(z, axis=1)
return tf.reduce_mean(2*tf.math.acos(tf.math.sqrt(wtot*wtot)))
It is much faster but it seems that but it reduce all value of the quaternion, so it does not work correctly.
**
So sorry for lots of math.
**
UPDATE 2
Based on David's suggested code, I wrote this:
def loss(y_true, y_pred):
z = y_true * (y_pred * tf.constant([1., -1., -1., -1.000000000]))
wtot = tf.reduce_sum(z,1)
return tf.reduce_mean(2*tf.math.acos(K.clip(tf.math.sqrt(wtot*wtot), -1.,1.)))
This code reduced the loss but MSE grows exponentially. I understand that this code wont optimized for MSE directly, but due to mathematics the MSE also must decreases.
After 10 epochs
loss: 0.0124 - mse: 227.4045
One of outputs based on the custom loss
Orange = Reference
Blue = Estimated by NN
One of outputs based on the MSE loss function

You should be able to vectorize (and speed up) the calculation using this approach. (I'm not sure I have all the signs right - don't understand why your lines 'x1 = -x1' are there. And I've temporarily remove the 'clip' part, you'll need to put that back if you want it)
def loss(y_true, y_pred):
z = y_true * y_pred * tf.constant([[1., -1., -1., -1.]])
wtot = tf.reduce_sum(z, axis=1)
return tf.reduce_mean(2*tf.math.acos(tf.math.sqrt(wtot*wtot)))
Can't see what the error in the maths is, sorry

Related

How to implement custom Keras ordinal loss function with tensor evaluation without disturbing TF>2.0 Model Graph?

I am trying to implement a custom loss function in Tensorflow 2.4 using the Keras backend.
The loss function is a ranking loss; I found the following paper with a somewhat log-likelihood loss: Chen et al. Single-Image Depth Perception in the Wild.
Similarly, I wanted to sample some (in this case 50) points from an image to compare the relative order between ground-truth and predicted depth maps using the NYU-Depth dataset. Being a fan of Numpy, I started working with that but came to the following exception:
ValueError: No gradients provided for any variable: [...]
I have learned that this is caused by the arguments not being filled when calling the loss function but instead, a C function is compiled which is then used later. So while I know the dimensions of my tensors (4, 480, 640, 1), I cannot work with the data as wanted and have to use the keras.backend functions on top so that in the end (if I understood correctly), there is supposed to be a path between the input tensors from the TF graph and the output tensor, which has to provide a gradient.
So my question now is: Is this a feasible loss function within keras?
I have already tried a few ideas and different approaches with different variations of my original code, which was something like:
def ranking_loss_function(y_true, y_pred):
# Chen et al. loss
y_true_np = K.eval(y_true)
y_pred_np = K.eval(y_pred)
if y_true_np.shape[0] != None:
num_sample_points = 50
total_samples = num_sample_points ** 2
err_list = [0 for x in range(y_true_np.shape[0])]
for i in range(y_true_np.shape[0]):
sample_points = create_random_samples(y_true, y_pred, num_sample_points)
for x1, y1 in sample_points:
for x2, y2 in sample_points:
if y_true[i][x1][y1] > y_true[i][x2][y2]:
#image_relation_true = 1
err_list[i] += np.log(1 + np.exp(-1 * y_pred[i][x1][y1] + y_pred[i][x2][y2]))
elif y_true[i][x1][y1] < y_true[i][x2][y2]:
#image_relation_true = -1
err_list[i] += np.log(1 + np.exp(y_pred[i][x1][y1] - y_pred[i][x2][y2]))
else:
#image_relation_true = 0
err_list[i] += np.square(y_pred[i][x1][y1] - y_pred[i][x2][y2])
err_list = np.divide(err_list, total_samples)
return K.constant(err_list)
As you can probably tell, the main idea was to first create the sample points and then based on the existing relation between them in y_true/y_pred continue with the corresponding computation from the cited paper.
Can anyone help me and provide some more helpful information or tips on how to correctly implement this loss using keras.backend functions? Trying to include the ordinal relation information really confused me compared to standard regression losses.
EDIT: Just in case this causes confusion: create_random_samples() just creates 50 random sample points (x, y) coordinate pairs based on the shape[1] and shape[2] of y_true (image width and height)
EDIT(2): After finding this variation on GitHub, I have tried out a variation using only TF functions to retrieve data from the tensors and compute the output. The adjusted and probably more correct version still throws the same exception though:
def ranking_loss_function(y_true, y_pred):
#In the Wild ranking loss
y_true_np = K.eval(y_true)
y_pred_np = K.eval(y_pred)
if y_true_np.shape[0] != None:
num_sample_points = 50
total_samples = num_sample_points ** 2
bs = y_true_np.shape[0]
w = y_true_np.shape[1]
h = y_true_np.shape[2]
total_samples = total_samples * bs
num_pairs = tf.constant([total_samples], dtype=tf.float32)
output = tf.Variable(0.0)
for i in range(bs):
sample_points = create_random_samples(y_true, y_pred, num_sample_points)
for x1, y1 in sample_points:
for x2, y2 in sample_points:
y_true_sq = tf.squeeze(y_true)
y_pred_sq = tf.squeeze(y_pred)
d1_t = tf.slice(y_true_sq, [i, x1, y1], [1, 1, 1])
d2_t = tf.slice(y_true_sq, [i, x2, y2], [1, 1, 1])
d1_p = tf.slice(y_pred_sq, [i, x1, y1], [1, 1, 1])
d2_p = tf.slice(y_pred_sq, [i, x2, y2], [1, 1, 1])
d1_t_sq = tf.squeeze(d1_t)
d2_t_sq = tf.squeeze(d2_t)
d1_p_sq = tf.squeeze(d1_p)
d2_p_sq = tf.squeeze(d2_p)
if d1_t_sq > d2_t_sq:
# --> Image relation = 1
output.assign_add(tf.math.log(1 + tf.math.exp(-1 * d1_p_sq + d2_p_sq)))
elif d1_t_sq < d2_t_sq:
# --> Image relation = -1
output.assign_add(tf.math.log(1 + tf.math.exp(d1_p_sq - d2_p_sq)))
else:
output.assign_add(tf.math.square(d1_p_sq - d2_p_sq))
return output/num_pairs
EDIT(3): This is the code for create_random_samples():
(FYI: Because it was weird to get the shape from y_true in this case, I first proceeded to hard-code it here as I know it for the dataset which I am currently using.)
def create_random_samples(y_true, y_pred, num_points=50):
y_true_shape = (4, 480, 640, 1)
y_pred_shape = (4, 480, 640, 1)
if y_true_shape[0] != None:
num_samples = num_points
population = [(x, y) for x in range(y_true_shape[1]) for y in range(y_true_shape[2])]
sample_points = random.sample(population, num_samples)
return sample_points

Custom loss for coordinate/landmark prediction

I am currently trying to get a landmark predictor running and thought about the loss function.
Currently the last (dense) layer has 32 values with the 16 coordinates encoded as x1,y1,x2,y2,...
Up until now I was just fiddling with Mean Squared Error or Mean Absolute Error losses but thought the distance between the ground truth and the predicted coordinate would be far more expressive of the correctness of the values.
My current implementation looks like:
def dst_objective(y_true, y_pred):
vats = dict()
for i in range(0, 16):
true_px = y_true[:, i * 2:i * 2 + 1]
pred_px = y_pred[:, i * 2:i * 2 + 1]
true_py = y_true[:, i * 2 + 1:i * 2 + 2]
pred_py = y_pred[:, i * 2 + 1:i * 2 + 2]
vats[i] = K.sqrt(K.square(true_px - pred_px) + K.square(true_py - pred_py))
out = K.concatenate([
vats[0], vats[1], vats[2], vats[3], vats[4], vats[5], vats[6], vats[7],
vats[8], vats[9], vats[10], vats[11], vats[12], vats[13], vats[14],
vats[15]
],axis=1)
return K.mean(out,axis=0)
It does seem to work when I evaluate it but it does look "hacky" to me. Any suggestions how I could improve on this?
The same calculation expressed as tensor operations in Keras, without separating the X and Y coordinates, because that's basically unnecessary:
# get all the squared difference in coordinates
sq_distances = K.square( y_true - y_pred )
# then take the sum of each pair
sum_pool = 2 * K.AveragePooling1D( sq_distances,
pool_size = 2,
strides = 2,
padding = "valid" )
# take the square root to get the distance
dists = K.sqrt( sum_pool )
# take the mean of the distances
mean_dist = K.mean( dists )

Implementing backpropagation gradient descent using scipy.optimize.minimize

I am trying to train an autoencoder NN (3 layers - 2 visible, 1 hidden) using numpy and scipy for the MNIST digits images dataset. The implementation is based on the notation given here Below is my code:
def autoencoder_cost_and_grad(theta, visible_size, hidden_size, lambda_, data):
"""
The input theta is a 1-dimensional array because scipy.optimize.minimize expects
the parameters being optimized to be a 1d array.
First convert theta from a 1d array to the (W1, W2, b1, b2)
matrix/vector format, so that this follows the notation convention of the
lecture notes and tutorial.
You must compute the:
cost : scalar representing the overall cost J(theta)
grad : array representing the corresponding gradient of each element of theta
"""
training_size = data.shape[1]
# unroll theta to get (W1,W2,b1,b2) #
W1 = theta[0:hidden_size*visible_size]
W1 = W1.reshape(hidden_size,visible_size)
W2 = theta[hidden_size*visible_size:2*hidden_size*visible_size]
W2 = W2.reshape(visible_size,hidden_size)
b1 = theta[2*hidden_size*visible_size:2*hidden_size*visible_size + hidden_size]
b2 = theta[2*hidden_size*visible_size + hidden_size: 2*hidden_size*visible_size + hidden_size + visible_size]
#feedforward pass
a_l1 = data
z_l2 = W1.dot(a_l1) + numpy.tile(b1,(training_size,1)).T
a_l2 = sigmoid(z_l2)
z_l3 = W2.dot(a_l2) + numpy.tile(b2,(training_size,1)).T
a_l3 = sigmoid(z_l3)
#backprop
delta_l3 = numpy.multiply(-(data-a_l3),numpy.multiply(a_l3,1-a_l3))
delta_l2 = numpy.multiply(W2.T.dot(delta_l3),
numpy.multiply(a_l2, 1 - a_l2))
b2_derivative = numpy.sum(delta_l3,axis=1)/training_size
b1_derivative = numpy.sum(delta_l2,axis=1)/training_size
W2_derivative = numpy.dot(delta_l3,a_l2.T)/training_size + lambda_*W2
#print(W2_derivative.shape)
W1_derivative = numpy.dot(delta_l2,a_l1.T)/training_size + lambda_*W1
W1_derivative = W1_derivative.reshape(hidden_size*visible_size)
W2_derivative = W2_derivative.reshape(visible_size*hidden_size)
b1_derivative = b1_derivative.reshape(hidden_size)
b2_derivative = b2_derivative.reshape(visible_size)
grad = numpy.concatenate((W1_derivative,W2_derivative,b1_derivative,b2_derivative))
cost = 0.5*numpy.sum((data-a_l3)**2)/training_size + 0.5*lambda_*(numpy.sum(W1**2) + numpy.sum(W2**2))
return cost,grad
I have also implemented a function to estimate the numerical gradient and verify the correctness of my implementation (below).
def compute_gradient_numerical_estimate(J, theta, epsilon=0.0001):
"""
:param J: a loss (cost) function that computes the real-valued loss given parameters and data
:param theta: array of parameters
:param epsilon: amount to vary each parameter in order to estimate
the gradient by numerical difference
:return: array of numerical gradient estimate
"""
gradient = numpy.zeros(theta.shape)
eps_vector = numpy.zeros(theta.shape)
for i in range(0,theta.size):
eps_vector[i] = epsilon
cost1,grad1 = J(theta+eps_vector)
cost2,grad2 = J(theta-eps_vector)
gradient[i] = (cost1 - cost2)/(2*epsilon)
eps_vector[i] = 0
return gradient
The norm of the difference between the numerical estimate and the one computed by the function is around 6.87165125021e-09 which seems to be acceptable. My main problem seems to be to get the gradient descent algorithm "L-BGFGS-B" working using the scipy.optimize.minimize function as below:
# theta is the 1-D array of(W1,W2,b1,b2)
J = lambda x: utils.autoencoder_cost_and_grad(theta, visible_size, hidden_size, lambda_, patches_train)
options_ = {'maxiter': 4000, 'disp': False}
result = scipy.optimize.minimize(J, theta, method='L-BFGS-B', jac=True, options=options_)
I get the below output from this:
scipy.optimize.minimize() details:
fun: 90.802022224079778
hess_inv: <16474x16474 LbfgsInvHessProduct with dtype=float64>
jac: array([ -6.83667742e-06, -2.74886002e-06, -3.23531941e-06, ...,
1.22425735e-01, 1.23425062e-01, 1.28091250e-01])
message: b'ABNORMAL_TERMINATION_IN_LNSRCH'
nfev: 21
nit: 0
status: 2
success: False
x: array([-0.06836677, -0.0274886 , -0.03235319, ..., 0. ,
0. , 0. ])
Now, this post seems to indicate that the error could mean that the gradient function implementation could be wrong? But my numerical gradient estimate seems to confirm that my implementation is correct. I have tried varying the initial weights by using a uniform distribution as specified here but the problem still persists. Is there anything wrong with my backprop implementation?
Turns out the issue was a syntax error (very silly) with this line:
J = lambda x: utils.autoencoder_cost_and_grad(theta, visible_size, hidden_size, lambda_, patches_train)
I don't even have the lambda parameter x in the function declaration. So the theta array wasn't even being passed whenever J was being invoked.
This fixed it:
J = lambda x: utils.autoencoder_cost_and_grad(x, visible_size, hidden_size, lambda_, patches_train)

tensorflow giving nans when calculating gradient with sparse tensors

The following snippet is from a fairly large piece of code but hopefully I can give all the information necessary:
y2 = tf.matmul(y1,ymask)
dist = tf.norm(ystar-y2,axis=0)
y1 and y2 are 128x30 and ymask is 30x30. ystar is 128x30. dist is 1x30. When ymask is the identity matrix, everything works fine. But when I set it to be all zeros, apart from a single 1 along the diagonal (so as to set all columns but one in y2 to be zero), I get nans for the gradient of dist with respect to y2, using tf.gradients(dist, [y2]). The specific value of dist is [0,0,7.9,0,...], with all the ystar-y2 values being around the range (-1,1) in the third column and zero elsewhere.
I'm pretty confused as to why a numerical issue would occur here, given there are no logs or divisions, is this underflow? Am I missing something in the maths?
For context, I'm doing this to try to train individual dimensions of y, one at a time, using the whole network.
longer version to reproduce:
import tensorflow as tf
import numpy as np
import pandas as pd
batchSize = 128
eta = 0.8
tasks = 30
imageSize = 32**2
groups = 3
tasksPerGroup = 10
trainDatapoints = 10000
w = np.zeros([imageSize, groups * tasksPerGroup])
toyIndex = 0
for toyLoop in range(groups):
m = np.ones([imageSize]) * np.random.randn(imageSize)
for taskLoop in range(tasksPerGroup):
w[:, toyIndex] = m * 0.1 * np.random.randn(1)
toyIndex += 1
xRand = np.random.normal(0, 0.5, (trainDatapoints, imageSize))
taskLabels = np.matmul(xRand, w) + np.random.normal(0,0.5,(trainDatapoints, groups * tasksPerGroup))
DF = np.concatenate((xRand, taskLabels), axis=1)
trainDF = pd.DataFrame(DF[:trainDatapoints, ])
# define graph variables
x = tf.placeholder(tf.float32, [None, imageSize])
W = tf.Variable(tf.zeros([imageSize, tasks]))
b = tf.Variable(tf.zeros([tasks]))
ystar = tf.placeholder(tf.float32, [None, tasks])
ymask = tf.placeholder(tf.float32, [tasks, tasks])
dataLength = tf.cast(tf.shape(ystar)[0],dtype=tf.float32)
y1 = tf.matmul(x, W) + b
y2 = tf.matmul(y1,ymask)
dist = tf.norm(ystar-y2,axis=0)
mse = tf.reciprocal(dataLength) * tf.reduce_mean(tf.square(dist))
grads = tf.gradients(dist, [y2])
trainStep = tf.train.GradientDescentOptimizer(eta).minimize(mse)
# build graph
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
randTask = np.random.randint(0, 9)
ymaskIn = np.zeros([tasks, tasks])
ymaskIn[randTask, randTask] = 1
batch = trainDF.sample(batchSize)
batch_xs = batch.iloc[:, :imageSize]
batch_ys = np.zeros([batchSize, tasks])
batch_ys[:, randTask] = batch.iloc[:, imageSize + randTask]
gradOut = sess.run(grads, feed_dict={x: batch_xs, ystar: batch_ys, ymask: ymaskIn})
sess.run(trainStep, feed_dict={x: batch_xs, ystar: batch_ys, ymask:ymaskIn})
Here's a very simple reproduction:
import tensorflow as tf
with tf.Graph().as_default():
y = tf.zeros(shape=[1], dtype=tf.float32)
dist = tf.norm(y,axis=0)
(grad,) = tf.gradients(dist, [y])
with tf.Session():
print(grad.eval())
Prints:
[ nan]
The issue is that tf.norm computes sum(x**2)**0.5. The gradient is x / sum(x**2) ** 0.5 (see e.g. https://math.stackexchange.com/a/84333), so when sum(x**2) is zero we're dividing by zero.
There's not much to be done in terms of a special case: the gradient as x approaches all zeros depends on which direction it's approaching from. For example if x is a single-element vector, the limit as x approaches 0 could either be 1 or -1 depending on which side of zero it's approaching from.
So in terms of solutions, you could just add a small epsilon:
import tensorflow as tf
def safe_norm(x, epsilon=1e-12, axis=None):
return tf.sqrt(tf.reduce_sum(x ** 2, axis=axis) + epsilon)
with tf.Graph().as_default():
y = tf.constant([0.])
dist = safe_norm(y,axis=0)
(grad,) = tf.gradients(dist, [y])
with tf.Session():
print(grad.eval())
Prints:
[ 0.]
Note that this is not actually the Euclidean norm. It's a good approximation as long as the input is much larger than epsilon.

How does Tensorflow Batch Normalization work?

I'm using tensorflow batch normalization in my deep neural network successfully. I'm doing it the following way:
if apply_bn:
with tf.variable_scope('bn'):
beta = tf.Variable(tf.constant(0.0, shape=[out_size]), name='beta', trainable=True)
gamma = tf.Variable(tf.constant(1.0, shape=[out_size]), name='gamma', trainable=True)
batch_mean, batch_var = tf.nn.moments(z, [0], name='moments')
ema = tf.train.ExponentialMovingAverage(decay=0.5)
def mean_var_with_update():
ema_apply_op = ema.apply([batch_mean, batch_var])
with tf.control_dependencies([ema_apply_op]):
return tf.identity(batch_mean), tf.identity(batch_var)
mean, var = tf.cond(self.phase_train,
mean_var_with_update,
lambda: (ema.average(batch_mean), ema.average(batch_var)))
self.z_prebn.append(z)
z = tf.nn.batch_normalization(z, mean, var, beta, gamma, 1e-3)
self.z.append(z)
self.bn.append((mean, var, beta, gamma))
And it works fine both for training and testing phases.
However I encounter problems when I try to use the computed neural network parameters in my another project, where I need to compute all the matrix multiplications and stuff by myself. The problem is that I can't reproduce the behavior of the tf.nn.batch_normalization function:
feed_dict = {
self.tf_x: np.array([range(self.x_cnt)]) / 100,
self.keep_prob: 1,
self.phase_train: False
}
for i in range(len(self.z)):
# print 0 layer's 1 value of arrays
print(self.sess.run([
self.z_prebn[i][0][1], # before bn
self.bn[i][0][1], # mean
self.bn[i][1][1], # var
self.bn[i][2][1], # offset
self.bn[i][3][1], # scale
self.z[i][0][1], # after bn
], feed_dict=feed_dict))
# prints
# [-0.077417567, -0.089603029, 0.000436493, -0.016652612, 1.0055743, 0.30664611]
According to the formula on the page https://www.tensorflow.org/versions/r1.2/api_docs/python/tf/nn/batch_normalization:
bn = scale * (x - mean) / (sqrt(var) + 1e-3) + offset
But as we can see,
1.0055743 * (-0.077417567 - -0.089603029)/(0.000436493^0.5 + 1e-3) + -0.016652612
= 0.543057
Which differs from the value 0.30664611, computed by Tensorflow itself.
So what am I doing wrong here and why I can't just calculate batch normalized value myself?
Thanks in advance!
The formula used is slightly different from:
bn = scale * (x - mean) / (sqrt(var) + 1e-3) + offset
It should be:
bn = scale * (x - mean) / (sqrt(var + 1e-3)) + offset
The variance_epsilon variable is supposed to scale with the variance, not with sigma, which is the square-root of variance.
After the correction, the formula yields the correct value:
1.0055743 * (-0.077417567 - -0.089603029)/((0.000436493 + 1e-3)**0.5) + -0.016652612
# 0.30664642276945747