I have a very simple object as keys in my cache and I want to be able to iterate on the key/value pairs where a string matches a field in my keys.
Here is how the field is declared in the class
#AffinityKeyMapped #QueryTextField String crawlQueueID;
I run many queries and expect a small amount of documents to match. The queries take a relatively large amount of time, which is surprising given that there are maybe only 100K pairs locally in the cache. My queries are local, I want to hit only the K/V stored in the local node.
According to the profiler I am using, 80% of the CPU is spent here
GridLuceneIndex.java:285 org.apache.lucene.search.IndexSearcher.search(Query, int)
Knowing Lucene's performance, I am really surprised. Any suggestions?
BTW I want to sort the results based on a numerical field in the value object. Can this be done via annotations?
I could have one cache per value of the field I am querying against but given that there are potentially hundreds of thousands or even millions of different values, that would probably be too many caches for Ignite to handle.
EDIT
Looking at the code that handles the Lucene indexing and querying, the index gets reloaded for every query. Given that I do hundreds of them in a row, we probably don't benefit from any caching or optimisation of the index structure in Lucene.
Additionally, there is a range query running as a filter to check for the TTL. FilterQueries are faster but on a fresh indexreader, there would not be much caching either. Of course, if no TTL is needed for a given table, this should not be required.
Judging by the documentation about the indexing with SQL indexing:
Ignite automatically creates indexes for each primary key and affinity
key field.
the indexing is done on the key alone. In my case, the value I want to use for sorting is in the value object so that would not work.
Related
indexes make read fast but write slower. But why can't you have single writes and have db add indexes asynchronously with time, also cache in the INSERT until it's indexed?
Is there any database like that?
Converting my comments to an answer:
indexes make read fast but write slower
That's an oversimplification and it's also misleading.
Indexes make data lookups faster because the DBMS doesn't need to do a table-scan to find rows matching a predicate (the WHERE part of a query). Indexes don't make "reads" any faster (that's entirely dependent on the characteristics of your disk IO) and when used improperly they can sometimes even make queries slower (for reasons I won't get into).
I want to stress that the additional cost of writing to a single index, or even multiple indexes, when executing a DML statement (INSERT/UPDATE/DELETE/MERGE/etc) is negligible, really! (In actuality: foreign-key constraints are a much bigger culprit - and I note you can practically eliminate the cost of foreign-key constraint checking by adding additional indexes!). Indexes are primarily implemented using B-trees (a B-tree is essentially like a binary-tree, except rather than each node having only 2 children it can have many children because each tree-node comes with unused space for all those child node pointers, so inserting into the middle of a B-tree won't require data to be moved-around on-disk unlike with other kinds of trees, like a heap-tree).
Consider this QA where a Postgres user (like yourself) reports inserting 10,000 rows into a table. Without an index it took 78ms, with an index it took 84ms, that's only a 7.5% increase, which at that scale (6ms!) is so small it may as well be a rounding error or caused by IO scheduling. That should be proof enough it shouldn't be something you should worry about without actual hard data showing it's a problem for you and your application.
I assume you have this negative impression about indexes after reading an article like this one, which certainly gives the impression that "indexes are bad" - but while the points mentioned in that article are not wrong, there's a LOT of problems with that article so you shouldn't take it dogmatically. (I'll list my concerns with that article in the footer).
But why can't you have single writes and have db add indexes asynchronously with time
By this I assume you mean you'd like a DMBS to do a single-row INSERT by simply appending a new record to the end of a table and then immediately returning and then at an arbitrary point later the DBMS' housekeeping system would update the indexes afterwards.
The problem with that is that it breaks the A, C, and I parts of the the A.C.I.D. model.
Indexes are used for more than just avoiding table-scans: they're also used to store copies of table data for the benefit of queries that would use the index and which also need (for example) a small subset of the table's data, this significantly reduces disk reads. For this reason, RDBMS (and ISO SQL) allow indexes to include non-indexed data using the INCLUDES clause.
Consider this scenario:
CREATE INDEX IX_Owners ON cars ( ownerId ) INCLUDE ( colour );
CREATE INDEX IX_Names ON people ( name ) INCLUDE ( personId, hairColour );
GO;
SELECT
people.name,
people.hairColour,
cars.colour
FROM
cars
INNER JOIN people ON people.personId = cars.ownerId
WHERE
people.name LIKE 'Steve%'
The above query will not need to read either the cars or people tables on-disk. The DBMS will be able to fully answer the query using data only in the index - which is great because indexes tend to exist in a small number of pages on-disk which tend to be in proximal-locality which is good for performance because it means it will use sequential IO which scales much better than random IO.
The RDBMS will perform a string-prefix index-scan of the people.IX_Names index to get all of the personId (and hairColour) values, then it will look-up those personId values in the cars.IX_Owners index and be able to get the car.colour from the copy of the data inside the IX_Owners index without needing to read the tables directly.
Now, assuming that another database client has just completed inserted a load of records into the cars and/or people table with a COMMIT TRANSACTION just for good measure, and the RDMBS uses your idea of only updating indexes later whenever it feels like it, then if that same database client re-runs the query from above it would return stale data (i.e. wrong data) because the query uses the index, but the index is old.
In addition to using index tree nodes to store copies of table data to avoid non-proximal disk IO, many RDBMS also use index-trees to store entire copies - even multiple copies of table data, to enable other scenarios, such as columnar data storage and indexed-VIEWs - both of these features absolutely require that indexes are updated atomically with table data.
Is there any database like that?
Yes, they exist - but they're not widely used (or they're niche) because for the vast majority of applications it's entirely undesirable behaviour for the reasons described above.
There are distributed databases that are designed around eventual consistency, but clients (and entire application code) needs to be designed with that in-mind, and it's a huge PITA to have to redesign a data-centric application to support eventual-consistency which is why you only really see them being used in truly massive systems (like Facebook, Google, etc) where availability (uptime) is more important than users seeing stale-data for a few minutes.
Footnote:
Regarding this article: https://use-the-index-luke.com/sql/dml/insert
The number of indexes on a table is the most dominant factor for insert performance. The more indexes a table has, the slower the execution becomes. The insert statement is the only operation that cannot directly benefit from indexing because it has no where clause.
I disagree. I'd argue that foreign-key constraints (and triggers) are far more likely to have a larger detrimental effect on DML operations.
Adding a new row to a table involves several steps. First, the database must find a place to store the row. For a regular heap table—which has no particular row order—the database can take any table block that has enough free space. This is a very simple and quick process, mostly executed in main memory. All the database has to do afterwards is to add the new entry to the respective data block.
I agree with this.
If there are indexes on the table, the database must make sure the new entry is also found via these indexes. For this reason it has to add the new entry to each and every index on that table. The number of indexes is therefore a multiplier for the cost of an insert statement.
This is true, but I don't know if I agree that it's a "multiplier" of the cost of an insert.
For example, consider a table with hundreds of nvarchar(1000) columns and several int columns - and there's separate indexes for each int column (with no INCLUDE columns). If you're inserting 100x megabyte-sized rows all-at-once (using an INSERT INTO ... SELECT FROM statement) the cost of updating those int indexes is very likely to require much less IO than the table data.
Moreover, adding an entry to an index is much more expensive than inserting one into a heap structure because the database has to keep the index order and tree balance. That means the new entry cannot be written to any block—it belongs to a specific leaf node. Although the database uses the index tree itself to find the correct leaf node, it still has to read a few index blocks for the tree traversal.
I strongly disagree with this, especially the first sentence: "adding an entry to an index is much more expensive than inserting one into a heap structure".
Indexes in RDBMS today are invariably based on B-trees, not binary-trees or heap-trees. B-trees are essentially like binary-trees except each node has built-in space for dozens of child node pointers and B-trees are only rebalanced when a node fills its internal child pointer list, so a B-tree node insert will be considerably cheaper than the article is saying because each node will have plenty of empty space for a new insertion without needing to re-balance itself or any other relatively expensive operation (besides, DBMS can and do index maintenance separately and independently of any DML statement).
The article is correct about how the DBMS will need to traverse the B-tree to find the node to insert into, but index nodes are efficently arranged on-disk, such as keeping related nodes in the same disk page which minimizes index IO reads (assuming they aren't already loaded into memory first). If an index tree is too big to store in-memory the RDBMS can always keep a "meta-indexes" in-memory so it could potentially instantly find the correct B-tree index without needing to traverse the B-tree from the root.
Once the correct leaf node has been identified, the database confirms that there is enough free space left in this node. If not, the database splits the leaf node and distributes the entries between the old and a new node. This process also affects the reference in the corresponding branch node as that must be duplicated as well. Needless to say, the branch node can run out of space as well so it might have to be split too. In the worst case, the database has to split all nodes up to the root node. This is the only case in which the tree gains an additional layer and grows in depth.
In practice this isn't a problem, because the RDBMS's index maintenance will ensure there's sufficient free space in each index node.
The index maintenance is, after all, the most expensive part of the insert operation. That is also visible in Figure 8.1, “Insert Performance by Number of Indexes”: the execution time is hardly visible if the table does not have any indexes. Nevertheless, adding a single index is enough to increase the execute time by a factor of a hundred. Each additional index slows the execution down further.
I feel the article is being dishonest by suggesting (implying? stating?) that index-maintenance happens with every DML. This is not true. This may have been the case with some early dBase-era databases, but this is certainly not the case with modern RDBMS like Postgres, MS SQL Server, Oracle and others.
Considering insert statements only, it would be best to avoid indexes entirely—this yields by far the best insert performance.
Again, this claim in the article is not wrong, but it's basically saying if you want a clean and tidy house you should get rid of all of your possessions. Indexes are a fact of life.
However tables without indexes are rather unrealistic in real world applications. You usually want to retrieve the stored data again so that you need indexes to improve query speed. Even write-only log tables often have a primary key and a respective index.
Indeed.
Nevertheless, the performance without indexes is so good that it can make sense to temporarily drop all indexes while loading large amounts of data—provided the indexes are not needed by any other SQL statements in the meantime. This can unleash a dramatic speed-up which is visible in the chart and is, in fact, a common practice in data warehouses.
Again, with modern RDBMS this isn't necessary. If you do a batch insert then a RDBMS won't update indexes until after the table-data has finished being modified, as a batch index update is cheaper than many individual updates. Similarly I expect that multiple DML statements and queries inside an explicit BEGIN TRANSACTION may cause an index-update deferral provided no subsequent query in the transaction relies on an updated index.
But my biggest issue with that article is that the author is making these bold claims about detrimental IO performance without providing any citations or even benchmarks they've run themselves. It's even more galling that they posted a bar-chart with arbitrary numbers on, again, without any citation or raw benchmark data and instructions for how to reproduce their results. Always demand citations and evidence from anything you read making claims: because the only claims anyone should accept without evidence are logical axioms - and a quantitative claim about database index IO cost is not a logical axiom :)
For PostgreSQL GIN indexes, there is the fastupdate feature. This stores new index entries into a unordered unconsolidated area waiting for some other process to file them away into the main index structure. But this doesn't directly match up with what you want. It is mostly designed so that the index updates are done in bulk (which can be more IO efficient), rather than in the background. Once the unconsolidated area gets large enough, then a foreground process might take on the task of filing them away, and it can be hard to tune the settings in a way to get this to always be done by a background process instead of a foreground process. And it only applies to GIN indexes. (With the use of the btree_gin extension, you can create GIN indexes on regular scalar columns rather than the array-like columns it usually works with.) While waiting for the entries to be consolidated, every query will have to sequential scan the unconsolidated buffer area, so delaying the updates for the sake of INSERT can come at a high cost for SELECTs.
There are more general techniques to do something like this, such as fractal tree indexes. But these are not implemented in PostgreSQL, and wherever they are implemented they seem to be proprietary.
As we are doing benchmark tests on our Couchbase DB, we tried to compare search for item by their id / key and search for items by a query that uses secondary index.
Following this article about indexing and performance in Couchbase we thought the performance of the two will be the same.
However, in our tests, we discovered that sometimes, the search by key/id was much faster then the search that uses the secondary index.
E.g. ~3MS to search using the index and ~0.3MS to search by the key.(this is a 10 times factor)
The point is that this difference is not consist. The search by key varies from 0.3MS to 15MS.
We are wondering if:
There should be better performance for search by key over search by secondary index?
There should be such time difference between key searches?
The results you get are consistent with what I would expect. Couchbase works as a key-value store when you do any operation using the id. A key-value store is roughly a big distributed hashmap, and in this data structure, you can a very good performance on get/save/delete while using the id.
Whenever you store a new document, couchbase hash the key and assign a Virtual Bucket to it (something similar to a shard). When you need to get this document back, it uses the same algorithm to find out in which virtual bucket the document is located, as the SDK has the cluster map and knows exactly which node has which shards, your application will request the document directly to the node who owns it.
On the other hand, when you query the database, Couchbase has to make internally a map/reduce to find out where the document is located, that is why operations by id are faster.
About your questions about results from 0.3ms to 15ms, it is hard to tell without debugging your environment. However, there are a number of factors that could contribute to it. Ex: the document is cached/not cached, node is undersized, etc.
To add to #deniswrosa's answer, the secondary index will always be slower, because first the index must be traversed based on your query to find the document key, and then a key lookup is performed. Doing just the key lookup is faster if you already have the key. The amount of work to traverse the index can vary depending on how selective the index is, whether the entire index is in memory, etc. Memory-optimized indexes can ensure that the whole index is in memory, if you have enough memory to support that.
Of course even a simple key lookup can be slower if the document in question is not in the cache, and needs to be brought in to memory from storage.
It is possible to achieve sub-millisecond secondary lookups at scale, but it requires some tuning of your query, index, and some possibly some of Couchbase' system parameters. Consider the following simple example:
Sample document in userBucket:
"user::000000000001" : {
"email" : "benjamin1#couchbase.com",
"userId" : "000000000001"
}
This query:
SELECT userId
FROM userBucket
WHERE
email = "benjamin1#couchbase.com"
AND userId IS NOT NULL
;
...should be able to achieve sub-millisecond performance with a properly tuned secondary index:
CREATE INDEX idx01 ON userBucket(email, userId);
Since the index is covering the query completely there is no need for the Query engine to FETCH the document from the K/V store. However "SELECT * ..." will always cause the Query service to FETCH the document and thus will be slower than a simple k/v GET("user::000000000001").
For the best latencies, make sure to review your query plan (using EXPLAIN syntax) and make sure your query is not FETCHing. https://docs.couchbase.com/server/6.0/n1ql/n1ql-language-reference/explain.html
Following CQRS practices, I will need to supply a custom generated ID (like a UUID) in any create command. This means when using OrientDB as storage, I won't be able to use its generated RIDs, but rather perform lookups on a manual index using the UUIDs.
Now in the OrientDB docs it states that the performance of fetching records using the RID is independent of the database size O(1), presumably because it already describes the physical location of the record. Is that also the case when using a UNIQUE_HASH_INDEX?
Is it worth bending CQRS practices to request a RID from the database when assembling the create command, or is the performance difference negligible?
I have tested the performance of record retrieval based on RIDs and indexed UUID fields using a database holding 180,000 records. For the measurement, 30,000 records have been looked up, while clearing the local cache between each retrieval. This is the result:
RID: about 0.2s per record
UUID: about 0.3s per record
I've done queries throughout populating the database in 30,000 record steps. The retrieval time wasn't significantly influenced by the database size in both cases. Don't mind the relatively high times as this experiment was done on an overloaded PC. It's the relation between the two that is relavant.
To anser my own question, a UNIQUE_HAS_INDEX based query is close enough to RID-based queries.
I am looking into implementing a scalable unordered collection of objects on top of Amazon DynamoDB. So far the following options have been considered:
Use DynamoDB document data types (map, list) and use document path to access stand-alone items. This has one obvious drawback for collection being limited to 400KB of data, meaning perhaps 1..10K objects depending on their size. Less obvious drawback is that cost of insertion of a new object into such collection is going to be huge: Amazon specifies that the write capacity will be deducted based on the total item size, not just newly added object -- therefore ~400 capacity units for inserting 1KB object when approaching the size limit. So considering this ruled out?
Using composite primary hash + range key, where primary hash remains the same for all objects in the collection, and range key is just something random or an atomic counter. Obvious drawback is that having identical hash key results in bad key distribution -- cardinality is low when there are collections with large number of objects. This means bad partitioning, and having a scale issue with all reads/writes on the same collection being stuck to one shard, becoming subject to 3000 reads / 1000 writes per second limitation of DynamoDB partition.
Using global secondary index with secondary hash + range key, where hash key remains the same for all objects belonging to the same collection, and range key is just something random or an atomic counter. Similar to above, partitioning becomes poor for the GSI, and it will become a bottleneck with too many identical hashes draining all the provisioned capacity to the index rapidly. I didn't find how the GSI is implemented exactly, thus not sure how badly it suffers from low cardinality.
Question is, whether I could live with (2) or (3) and suffer from non-ideal key distribution, or is there another way of implementing collection that was overlooked, or perhaps I should at all consider looking into another nosql database engine.
This is a "shooting from the hip" answer, what you end up doing may depend on how much and what type of reading and writing you do.
Two things the dynamo docs encourage you to avoid are hot keys and, in general, scans. You noted that in cases (2) and (3), you end up with a hot key. If you expect this to scale (large collections), the hot key will probably hurt more and more, especially if this is a write-intensive application.
The docs on Query and Scan operations (http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/QueryAndScan.html) say that, for a query, "you must specify the hash key attribute name and value as an equality condition." So if you want to avoid scans, this might still force your hand and put you back into that hot key situation.
Maybe one route would be to embrace doing a scan operation, but just have one table devoted to your collection. Then you could just have a fully random (well distributed) hash key and do a scan every time. This assumes you always want everything from the collection (you didn't say). This will still hurt if you scale up to a large collection, but if you always want the full set back, you'll have to deal with that pain regardless. If you just want a subset, you can add a limit parameter. This would help performance, but you will always get back the same subset (or you can use the last evaluated key and keep going). The docs also mention parallel scans.
If you are using AWS, elasticache/redis might be another route to try? The first pass might code up a lot faster/cleaner than situation (1) that you mentioned.
I have an table which use an auto-increment field (ID) as primary key. The table is append only and no row will be deleted. Table has been designed to have a constant row size.
Hence, I expected to have O(1) access time using any value as ID since it is easy to compute exact position to seek in file (ID*row_size), unfortunately that is not the case.
I'm using SQL Server.
Is it even possible ?
Thanks
Hence, I expected to have O(1) access
time using any value as ID since it is
easy to compute exact position to seek
in file (ID*row_size),
Ah. No. Autoincrement does not - even without deletions -guarantee no holes. Holes = seek via index. Ergo: your assumption is wrong.
I guess the thing that matters to you is the performance.
Databases use indexes to access records which are written on the disk.
Usually this is done with B+ tree indexes, which are logbn where b for internal nodes is typically between 100 and 200 (optimized to block size, see ref)
This is still strictly speaking logarithmic performance, but given decent number of records, let's say a few million, the leaf nodes can be reached in 3 to 4 steps and that, together with all the overhead for query planning, session initiation, locking, etc (that you would have anyway if you need multiuser, ACID compliant data management system) is certainly for all practical reasons comparable to constant time.
The good news is that an indexed read is O(log(n)) which for large values of n gets pretty close to O(1). That said in this context O notation is not very useful, and actual timings are far more meanigful.
Even if it were possible to address rows directly, your query would still have to go through the client and server protocol stacks and carry out various lookups and memory allocations before it could give the result you want. It seems like you are expecting something that isn't even practical. What is the real problem here? Is SQL Server not fast enough for you? If so there are many options you can use to improve performance but directly seeking an address in a file is not one of them.
Not possible. SQL Server organizes data into a tree-like structure based on key and index values; an "index" in the DB sense is more like a reference book's index and not like an indexed data structure like an array or list. At best, you can get logarithmic performance when searching on an indexed value (PKs are generally treated as an index). Worst-case is a table scan for a non-indexed column, which is linear. Until the database gets very large, the seek time of a well-designed query against a well-designed table will pale in comparison to the time required to send it over the network or even a named pipe.