Cannot query rows larger than 100MB limit - google-bigquery

Trying to update/insert (500k rows in a single struct array) records in the struct column. It throws the below error shown in the screenshot. Below is the query
insert into test_dataset.hierarchy
select create_date_time,update_date_time,name,
ARRAY_AGG(struct( id,dba_name, dba_address1, dba_address2, dba_city, dba_state, dba_country, dba_postal_code, dba_fax_number, dba_primary_phone_number, dba_secondary_phone_number, dba_email,
[struct( attribute_name, attribute_value)] as attribute_array)) as m_array
from test_dataset.temp
group by 1,2,3;
Error1
Error2
Need help on this issue.

To use array_agg you have the limitation of 100mb per line.
During group by, one or some of your lines grouped by 1,2,3 are exceeding this limit.
This usually happens with null values or some big groups that are usually not expected.
Also, keep in mind, the more columns you add, the heavier the line gets.
A way to solve this problem is breaking your group by into smaller groups.
Lets say you have
1.create_date_time 5 distinct registers,
2.update_date_time 10 distinct registers,
3.name 30million distinct registers.
Considering an equal distribution:
Group by 1 (6 million names per line)
Group by 2 (3 million names per line)
Group by 3 (1 name per line)
You can use group by with more columns, to make one big line into 4-5 smaller ones, this will drastically reduce the line size.

Related

Exclude a string starting with certain letter by a SQL query in Google BigQuery

I'm trying to exclude values from a larger public table in Googles BigQuery using the following SQL lines.
The last line has the purpose to exclude entries, that start with a certain letter, e.g. 'C'.
For some reason, when I add the line, the count increases. Logically the selected rows should decrease and I can’t figure out why.
How can I make the exclusion work?
SELECT Count(*)
FROM `patents-public-data.patents.publications`,
unnest(description_localized) as description_unnest,
unnest(claims_localized) as claims_unnest,
unnest(cpc) as cpc_unnest
where description_unnest.language in ('en','EN')
and claims_unnest.language in ('en','EN')
and publication_date >19900101
and (SUBSTRING(cpc_unnest.code,1,1) <> 'C');
OK. I think I found the mistakes I made
I compared the number of cases with and without this line #7. That was leading to the increased rows.
#7 unnest(cpc) as cpc_unnest
THIS IS MOST IMPORTANT: I did not want to know the number of rows, but the number of unique entries. As the table is build up according to the publication numbers, I can use this number to search for unique entries. The SQL command Count(DISTINCT attribut) can be used:
SELECT Count(DISTINCT publication_number)
The whole solution is this
SELECT Count(DISTINCT publication_number)
FROM `patents-public-data.patents.publications`,
unnest(description_localized) as description_unnest,
unnest(claims_localized) as claims_unnest,
unnest(cpc) as cpc_unnest
where description_unnest.language in ('en','EN')
and claims_unnest.language in ('en','EN')
and publication_date >19900101
and (SUBSTRING(cpc_unnest.code,1,1) <> 'C')

SQL: Reduce resultset to X rows?

I have the following MYSQL table:
measuredata:
- ID (bigint)
- timestamp
- entityid
- value (double)
The table contains >1 billion entries. I want to be able to visualize any time-window. The time window can be size of "one day" to "many years". There are measurement values round about every minute in DB.
So the number of entries for a time-window can be quite different. Say from few hundrets to several thousands or millions.
Those values are ment to be visualiuzed in a graphical chart-diagram on a webpage.
If the chart is - lets say - 800px wide, it does not make sense to get thousands of rows from database if time-window is quite big. I cannot show more than 800 values on this chart anyhow.
So, is there a way to reduce the resultset directly on DB-side?
I know "average" and "sum" etc. as aggregate function. But how can I i.e. aggregate 100k rows from a big time-window to lets say 800 final rows?
Just getting those 100k rows and let the chart do the magic is not the preferred option. Transfer-size is one reason why this is not an option.
Isn't there something on DB side I can use?
Something like avg() to shrink X rows to Y averaged rows?
Or a simple magic to just skip every #th row to shrink X to Y?
update:
Although I'm using MySQL right now, I'm not tied to this. If PostgreSQL f.i. provides a feature that could solve the issue, I'm willing to switch DB.
update2:
I maybe found a possible solution: https://mike.depalatis.net/blog/postgres-time-series-database.html
See section "Data aggregation".
The key is not to use a unixtimestamp but a date and "trunc" it, avergage the values and group by the trunc'ed date. Could work for me, but would require a rework of my table structure. Hmm... maybe there's more ... still researching ...
update3:
Inspired by update 2, I came up with this query:
SELECT (`timestamp` - (`timestamp` % 86400)) as aggtimestamp, `entity`, `value` FROM `measuredata` WHERE `entity` = 38 AND timestamp > UNIX_TIMESTAMP('2019-01-25') group by aggtimestamp
Works, but my DB/index/structue seems not really optimized for this: Query for last year took ~75sec (slow test machine) but finally got only a one value per day. This can be combined with avg(value), but this further increases query time... (~82sec). I will see if it's possible to further optimize this. But I now have an idea how "downsampling" data works, especially with aggregation in combination with "group by".
There is probably no efficient way to do this. But, if you want, you can break the rows into equal sized groups and then fetch, say, the first row from each group. Here is one method:
select md.*
from (select md.*,
row_number() over (partition by tile order by timestamp) as seqnum
from (select md.*, ntile(800) over (order by timestamp) as tile
from measuredata md
where . . . -- your filtering conditions here
) md
) md
where seqnum = 1;

BigQuery join too slow for a table of small size

I have a table with the following details:
- Table Size 39.6 MB
- Number of Rows 691,562
- 2 columns : contact_guid STRING, program_completed STRING
- column 1 data type is like uuid . around 30 char length
- column 2 data type is string with around 50 char length
I am trying this query:
#standardSQL
SELECT
cp1.contact_guid AS p1,
cp2.contact_guid AS p2,
COUNT(*) AS cnt
FROM
`data.contact_pairs_program_together` cp1
JOIN
`data.contact_pairs_program_together` cp2
ON
cp1.program_completed=cp2.program_completed
WHERE
cp1.contact_guid < cp2.contact_guid
GROUP BY
cp1.contact_guid,
cp2.contact_guid having cnt >1 order by cnt desc
Time taken to execute: 1200 secs
I know I am doing a self join and it is mentioned in best practices to avoid self join.
My Questions:
I feel this table size in terms of mb is too small for BigQuery therefore why is it taking so much time? And what does small table mean for BigQuery in context of join in terms of number of rows and size in bytes?
Is the number of rows too large? 700k ^ 2 is 10^11 rows during join. What would be a realistic number of rows for joins?
I did check the documentation regarding joins, but did not find much regarding how big a table can be for joins and how much time can be expected for it to run. How do we estimate rough execution time?
Execution Details:
As shown on the screenshot you provided - you are dealing with an exploding join.
In this case step 3 takes 1.3 million rows, and manages to produce 459 million rows. Steps 04 to 0B deal with repartitioning and re-shuffling all that extra data - as the query didn't provision enough resources to deal with these number of rows: It scaled up from 1 parallel input to 10,000!
You have 2 choices here: Either avoid exploding joins, or assume that exploding joins will take a long time to run. But as explained in the question - you already knew that!
How about if you generate all the extra rows in one op (do the join, materialize) and then run another query to process the 459 million rows? The first query will be slow for the reasons explained, but the second one will run quickly as BigQuery will provision enough resource to deal with that amount of data.
Agree with below suggestions
see if you can rephrase your query using analytic functions (by Tim)
Using analytic functions would be a much better idea (by Elliott)
Below is how I would make it
#standardSQL
SELECT
p1, p2, COUNT(1) AS cnt
FROM (
SELECT
contact_guid AS p1,
ARRAY_AGG(contact_guid) OVER(my_win) guids
FROM `data.contact_pairs_program_together`
WINDOW my_win AS (
PARTITION BY program_completed
ORDER BY contact_guid DESC
RANGE BETWEEN UNBOUNDED PRECEDING AND 1 PRECEDING
)
), UNNEST(guids) p2
GROUP BY p1, p2
HAVING cnt > 1
ORDER BY cnt DESC
Please try and let us know if helped

postgres: get random entries from table - too slow

In my postgres database, I have the following relationships (simplified for the sake of this question):
Objects (currently has about 250,000 records)
-------
n_id
n_store_object_id (references store.n_id, 1-to-1 relationship, some objects don't have store records)
n_media_id (references media.n_id, 1-to-1 relationship, some objects don't have media records)
Store (currently has about 100,000 records)
-----
n_id
t_name,
t_description,
n_status,
t_tag
Media
-----
n_id
t_media_path
So far, so good. When I need to query the data, I run this (note the limit 2 at the end, as part of the requirement):
select
o.n_id,
s.t_name,
s.t_description,
me.t_media_path
from
objects o
join store s on (o.n_store_object_id = s.n_id and s.n_status > 0 and s.t_tag is not null)
join media me on o.n_media_id = me.n_id
limit
2
This works fine and gives me two entries back, as expected. The execution time on this is about 20 ms - just fine.
Now I need to get 2 random entries every time the query runs. I thought I'd add order by random(), like so:
select
o.n_id,
s.t_name,
s.t_description,
me.t_media_path
from
objects o
join store s on (o.n_store_object_id = s.n_id and s.n_status > 0 and s.t_tag is not null)
join media me on o.n_media_id = me.n_id
order by
random()
limit
2
While this gives the right results, the execution time is now about 2,500 ms (over 2 seconds). This is clearly not acceptable, as it's one of a number of queries to be run to get data for a page in a web app.
So, the question is: how can I get random entries, as above, but still keep the execution time within some reasonable amount of time (i.e. under 100 ms is acceptable for my purpose)?
Of course it needs to sort the whole thing according to random criteria before getting first rows. Maybe you can work around by using random() in offset instead?
Here's some previous work done on the topic which may prove helpful:
http://blog.rhodiumtoad.org.uk/2009/03/08/selecting-random-rows-from-a-table/
I'm thinking you'll be better off selecting random objects first, then performing the join to those objects after they're selected. I.e., query once to select random objects, then query again to join just those objects that were selected.
It seems like your problem is this: You have a table with 250,000 rows and need two random rows. Thus, you have to generate 250,000 random numbers and then sort the rows by their numbers. Two seconds to do this seems pretty fast to me.
The only real way to speed up the selection is not have to come up with 250,000 random numbers, but instead lookup rows through an index.
I think you'd have to change the table schema to optimize for this case. How about something like:
1) Create a new column with a sequence starting at 1.
2) Every row will then have a number.
3) Create an index on: number % 1000
4) Query for rows where number % 1000 is equal to a random number
between 0 and 999 (this should hit the index and load a random
portion of your database)
5) You can probably then add on RANDOM() to your ORDER BY clause and
it will then just sort that chunk of your database and be 1,000x
faster.
6) Then select the first two of those rows.
If this still isn't random enough (since rows will always be paired having the same "hash"), you could probably do a union of two random rows, or have an OR clause in the query and generate two random keys.
Hopefully something along these lines could be very fast and decently random.

Biased random in SQL?

I have some entries in my database, in my case Videos with a rating and popularity and other factors. Of all these factors I calculate a likelihood factor or more to say a boost factor.
So I essentially have the fields ID and BOOST.The boost is calculated in a way that it turns out as an integer that represents the percentage of how often this entry should be hit in in comparison.
ID Boost
1 1
2 2
3 7
So if I run my random function indefinitely I should end up with X hits on ID 1, twice as much on ID 2 and 7 times as much on ID 3.
So every hit should be random but with a probability of (boost / sum of boosts). So the probability for ID 3 in this example should be 0.7 (because the sum is 10. I choose those values for simplicity).
I thought about something like the following query:
SELECT id FROM table WHERE CEIL(RAND() * MAX(boost)) >= boost ORDER BY rand();
Unfortunately that doesn't work, after considering the following entries in the table:
ID Boost
1 1
2 2
It will, with a 50/50 chance, have only the 2nd or both elements to choose from randomly.
So 0.5 hit goes to the second element
And 0.5 hit goes to the (second and first) element which is chosen from randomly so so 0.25 each.
So we end up with a 0.25/0.75 ratio, but it should be 0.33/0.66
I need some modification or new a method to do this with good performance.
I also thought about storing the boost field cumulatively so I just do a range query from (0-sum()), but then I would have to re-index everything coming after one item if I change it or develop some swapping algorithm or something... but that's really not elegant and stuff.
Both inserting/updating and selecting should be fast!
Do you have any solutions to this problem?
The best use case to think of is probably advertisement delivery. "Please choose a random ad with given probability"... however i need it for another purpose but just to give you a last picture what it should do.
edit:
Thanks to kens answer i thought about the following approach:
calculate a random value from 0-sum(distinct boost)
SET #randval = (select ceil(rand() * sum(DISTINCT boost)) from test);
select the boost factor from all distinct boost factors which added up surpasses the random value
then we have in our 1st example 1 with a 0.1, 2 with a 0.2 and 7 with a 0.7 probability.
now select one random entry from all entries having this boost factor
PROBLEM: because the count of entries having one boost is always different. For example if there is only 1-boosted entry i get it in 1 of 10 calls, but if there are 1 million with 7, each of them is hardly ever returned...
so this doesnt work out :( trying to refine it.
I have to somehow include the count of entries with this boost factor ... but i am somehow stuck on that...
You need to generate a random number per row and weight it.
In this case, RAND(CHECKSUM(NEWID())) gets around the "per query" evaluation of RAND. Then simply multiply it by boost and ORDER BY the result DESC. The SUM..OVER gives you the total boost
DECLARE #sample TABLE (id int, boost int)
INSERT #sample VALUES (1, 1), (2, 2), (3, 7)
SELECT
RAND(CHECKSUM(NEWID())) * boost AS weighted,
SUM(boost) OVER () AS boostcount,
id
FROM
#sample
GROUP BY
id, boost
ORDER BY
weighted DESC
If you have wildly different boost values (which I think you mentioned), I'd also consider using LOG (which is base e) to smooth the distribution.
Finally, ORDER BY NEWID() is a randomness that would take no account of boost. It's useful to seed RAND but not by itself.
This sample was put together on SQL Server 2008, BTW
I dare to suggest straightforward solution with two queries, using cumulative boost calculation.
First, select sum of boosts, and generate some number between 0 and boost sum:
select ceil(rand() * sum(boost)) from table;
This value should be stored as a variable, let's call it {random_number}
Then, select table rows, calculating cumulative sum of boosts, and find the first row, which has cumulative boost greater than {random number}:
SET #cumulative_boost=0;
SELECT
id,
#cumulative_boost:=(#cumulative_boost + boost) AS cumulative_boost,
FROM
table
WHERE
cumulative_boost >= {random_number}
ORDER BY id
LIMIT 1;
My problem was similar: Every person had a calculated number of tickets in the final draw. If you had more tickets then you would have an higher chance to win "the lottery".
Since I didn't trust any of the found results rand() * multiplier or the one with -log(rand()) on the web I wanted to implement my own straightforward solution.
What I did and in your case would look a little bit like this:
(SELECT id, boost FROM foo) AS values
INNER JOIN (
SELECT id % 100 + 1 AS counter
FROM user
GROUP BY counter) AS numbers ON numbers.counter <= values.boost
ORDER BY RAND()
Since I don't have to run it often I don't really care about future performance and at the moment it was fast for me.
Before I used this query I checked two things:
The maximum number of boost is less than the maximum returned in the number query
That the inner query returns ALL numbers between 1..100. It might not depending on your table!
Since I have all distinct numbers between 1..100 then joining on numbers.counter <= values.boost would mean that if a row has a boost of 2 it would end up duplicated in the final result. If a row has a boost of 100 it would end up in the final set 100 times. Or in another words. If sum of boosts is 4212 which it was in my case you would have 4212 rows in the final set.
Finally I let MySql sort it randomly.
Edit: For the inner query to work properly make sure to use a large table, or make sure that the id's don't skip any numbers. Better yet and probably a bit faster you might even create a temporary table which would simply have all numbers between 1..n. Then you could simply use INNER JOIN numbers ON numbers.id <= values.boost