I am using a line to estimate the slope of my graphs. the data points are in the same size. But look at these two pictures. the first one seems to have a larger slope but its not true. the second one has larger slope. but since the y-axis has different rate, the first one looks to have a larger slope. is there any way to fix the rate of y-axis, then I can see with my eye which one has bigger slop?
code:
x = np.array(list(range(0,df.shape[0]))) # = array([0, 1, 2, ..., 3598, 3599, 3600])
df1[skill]=pd.to_numeric(df1[skill])
fit = np.polyfit(x, df1[skill], 1)
fit_fn = np.poly1d(fit)
df['fit_fn(x)']=fit_fn(x)
df[['Hodrick-Prescott filter',skill,'fit_fn(x)']].plot(title=skill + date)
Two ways:
One, use matplotlib.pyplot.axis to get the axis limits of the first figure and set the second figure to have the same axis limits (using the same function) (could also use get_ylim and set_ylim, which are specific to the y-axis but require directly referencing the Axes object)
Two, plot both in a subplots figure and set the argument sharey to True (my preferred, depending on the desired use)
I have images (4000x2000 pixels) that are derived from the same image, but with subtle differences in less than 1% of the pixels. I'd like to plot the two images side-by-side and highlight the regions of the array's that are different (by highlight I mean I want the pixels that differ to jump out, but still display the color that matches their value. I've been using rectangles that are unfilled to outline the edges of such pixels so far. I can do this very nicely in small images (~50x50) with:
fig=figure(figsize=(20,15))
ax1=fig.add_subplot(1,2,1)
imshow(image1,interpolation='nearest',origin='lower left')
colorbar()
ax2=fig.add_subplot(122,sharex=ax1, sharey=ax1)
imshow(image2,interpolation='nearest',origin='lower left')
colorbar()
#now show differences
Xspots=im1!=im2
Xx,Xy=nonzero(Xspots)
for x,y in zip(Xx,Xy):
rect=Rectangle((y-.5,x-.5),1,1,color='w',fill=False,ec='w')
ax1.add_patch(rect)
ax2.add_patch(rect)
However this doesn't work so well when the image is very large. Strange things happen, for example when I zoom in the patch disappears. Also, this way sucks because it takes forever to load things when I zoom in/out.
I feel like there must be a better way to do this, maybe one where there is only one patch that determines where all of the things are, rather than a whole bunch of patches. I could do a scatter plot on top of the imshow image, but I don't know how to fix it so that the points will stay exactly the size of the pixel when I zoom in/out.
Any ideas?
I would try something with the alpha channel:
import copy
N, M = 20, 40
test_data = np.random.rand(N, M)
mark_mask = np.random.rand(N, M) < .01 # mask 1%
# this is redundant in this case, but in general you need it
my_norm = matplotlib.colors.Normalize(vmin=0, vmax=1)
# grab a copy of the color map
my_cmap = copy.copy(cm.get_cmap('cubehelix'))
c_data= my_cmap(my_norm(test_data))
c_data[:, :, 3] = .5 # make everything half alpha
c_data[mark_mask, 3] = 1 # reset the marked pixels as full opacity
# plot it
figure()
imshow(c_data, interpolation='none')
No idea if this will work with your data or not.
In the pyplot document for scatter plot:
matplotlib.pyplot.scatter(x, y, s=20, c='b', marker='o', cmap=None, norm=None,
vmin=None, vmax=None, alpha=None, linewidths=None,
faceted=True, verts=None, hold=None, **kwargs)
The marker size
s:
size in points^2. It is a scalar or an array of the same length as x and y.
What kind of unit is points^2? What does it mean? Does s=100 mean 10 pixel x 10 pixel?
Basically I'm trying to make scatter plots with different marker sizes, and I want to figure out what does the s number mean.
This can be a somewhat confusing way of defining the size but you are basically specifying the area of the marker. This means, to double the width (or height) of the marker you need to increase s by a factor of 4. [because A = WH => (2W)(2H)=4A]
There is a reason, however, that the size of markers is defined in this way. Because of the scaling of area as the square of width, doubling the width actually appears to increase the size by more than a factor 2 (in fact it increases it by a factor of 4). To see this consider the following two examples and the output they produce.
# doubling the width of markers
x = [0,2,4,6,8,10]
y = [0]*len(x)
s = [20*4**n for n in range(len(x))]
plt.scatter(x,y,s=s)
plt.show()
gives
Notice how the size increases very quickly. If instead we have
# doubling the area of markers
x = [0,2,4,6,8,10]
y = [0]*len(x)
s = [20*2**n for n in range(len(x))]
plt.scatter(x,y,s=s)
plt.show()
gives
Now the apparent size of the markers increases roughly linearly in an intuitive fashion.
As for the exact meaning of what a 'point' is, it is fairly arbitrary for plotting purposes, you can just scale all of your sizes by a constant until they look reasonable.
Edit: (In response to comment from #Emma)
It's probably confusing wording on my part. The question asked about doubling the width of a circle so in the first picture for each circle (as we move from left to right) it's width is double the previous one so for the area this is an exponential with base 4. Similarly the second example each circle has area double the last one which gives an exponential with base 2.
However it is the second example (where we are scaling area) that doubling area appears to make the circle twice as big to the eye. Thus if we want a circle to appear a factor of n bigger we would increase the area by a factor n not the radius so the apparent size scales linearly with the area.
Edit to visualize the comment by #TomaszGandor:
This is what it looks like for different functions of the marker size:
x = [0,2,4,6,8,10,12,14,16,18]
s_exp = [20*2**n for n in range(len(x))]
s_square = [20*n**2 for n in range(len(x))]
s_linear = [20*n for n in range(len(x))]
plt.scatter(x,[1]*len(x),s=s_exp, label='$s=2^n$', lw=1)
plt.scatter(x,[0]*len(x),s=s_square, label='$s=n^2$')
plt.scatter(x,[-1]*len(x),s=s_linear, label='$s=n$')
plt.ylim(-1.5,1.5)
plt.legend(loc='center left', bbox_to_anchor=(1.1, 0.5), labelspacing=3)
plt.show()
Because other answers here claim that s denotes the area of the marker, I'm adding this answer to clearify that this is not necessarily the case.
Size in points^2
The argument s in plt.scatter denotes the markersize**2. As the documentation says
s : scalar or array_like, shape (n, ), optional
size in points^2. Default is rcParams['lines.markersize'] ** 2.
This can be taken literally. In order to obtain a marker which is x points large, you need to square that number and give it to the s argument.
So the relationship between the markersize of a line plot and the scatter size argument is the square. In order to produce a scatter marker of the same size as a plot marker of size 10 points you would hence call scatter( .., s=100).
import matplotlib.pyplot as plt
fig,ax = plt.subplots()
ax.plot([0],[0], marker="o", markersize=10)
ax.plot([0.07,0.93],[0,0], linewidth=10)
ax.scatter([1],[0], s=100)
ax.plot([0],[1], marker="o", markersize=22)
ax.plot([0.14,0.86],[1,1], linewidth=22)
ax.scatter([1],[1], s=22**2)
plt.show()
Connection to "area"
So why do other answers and even the documentation speak about "area" when it comes to the s parameter?
Of course the units of points**2 are area units.
For the special case of a square marker, marker="s", the area of the marker is indeed directly the value of the s parameter.
For a circle, the area of the circle is area = pi/4*s.
For other markers there may not even be any obvious relation to the area of the marker.
In all cases however the area of the marker is proportional to the s parameter. This is the motivation to call it "area" even though in most cases it isn't really.
Specifying the size of the scatter markers in terms of some quantity which is proportional to the area of the marker makes in thus far sense as it is the area of the marker that is perceived when comparing different patches rather than its side length or diameter. I.e. doubling the underlying quantity should double the area of the marker.
What are points?
So far the answer to what the size of a scatter marker means is given in units of points. Points are often used in typography, where fonts are specified in points. Also linewidths is often specified in points. The standard size of points in matplotlib is 72 points per inch (ppi) - 1 point is hence 1/72 inches.
It might be useful to be able to specify sizes in pixels instead of points. If the figure dpi is 72 as well, one point is one pixel. If the figure dpi is different (matplotlib default is fig.dpi=100),
1 point == fig.dpi/72. pixels
While the scatter marker's size in points would hence look different for different figure dpi, one could produce a 10 by 10 pixels^2 marker, which would always have the same number of pixels covered:
import matplotlib.pyplot as plt
for dpi in [72,100,144]:
fig,ax = plt.subplots(figsize=(1.5,2), dpi=dpi)
ax.set_title("fig.dpi={}".format(dpi))
ax.set_ylim(-3,3)
ax.set_xlim(-2,2)
ax.scatter([0],[1], s=10**2,
marker="s", linewidth=0, label="100 points^2")
ax.scatter([1],[1], s=(10*72./fig.dpi)**2,
marker="s", linewidth=0, label="100 pixels^2")
ax.legend(loc=8,framealpha=1, fontsize=8)
fig.savefig("fig{}.png".format(dpi), bbox_inches="tight")
plt.show()
If you are interested in a scatter in data units, check this answer.
You can use markersize to specify the size of the circle in plot method
import numpy as np
import matplotlib.pyplot as plt
x1 = np.random.randn(20)
x2 = np.random.randn(20)
plt.figure(1)
# you can specify the marker size two ways directly:
plt.plot(x1, 'bo', markersize=20) # blue circle with size 10
plt.plot(x2, 'ro', ms=10,) # ms is just an alias for markersize
plt.show()
From here
It is the area of the marker. I mean if you have s1 = 1000 and then s2 = 4000, the relation between the radius of each circle is: r_s2 = 2 * r_s1. See the following plot:
plt.scatter(2, 1, s=4000, c='r')
plt.scatter(2, 1, s=1000 ,c='b')
plt.scatter(2, 1, s=10, c='g')
I had the same doubt when I saw the post, so I did this example then I used a ruler on the screen to measure the radii.
I also attempted to use 'scatter' initially for this purpose. After quite a bit of wasted time - I settled on the following solution.
import matplotlib.pyplot as plt
input_list = [{'x':100,'y':200,'radius':50, 'color':(0.1,0.2,0.3)}]
output_list = []
for point in input_list:
output_list.append(plt.Circle((point['x'], point['y']), point['radius'], color=point['color'], fill=False))
ax = plt.gca(aspect='equal')
ax.cla()
ax.set_xlim((0, 1000))
ax.set_ylim((0, 1000))
for circle in output_list:
ax.add_artist(circle)
This is based on an answer to this question
If the size of the circles corresponds to the square of the parameter in s=parameter, then assign a square root to each element you append to your size array, like this: s=[1, 1.414, 1.73, 2.0, 2.24] such that when it takes these values and returns them, their relative size increase will be the square root of the squared progression, which returns a linear progression.
If I were to square each one as it gets output to the plot: output=[1, 2, 3, 4, 5]. Try list interpretation: s=[numpy.sqrt(i) for i in s]
I'm trying to display 2D data with axis labels using both contour and pcolormesh. As has been noted on the matplotlib user list, these functions obey different conventions: pcolormesh expects the x and y values to specify the corners of the individual pixels, while contour expects the centers of the pixels.
What is the best way to make these behave consistently?
One option I've considered is to make a "centers-to-edges" function, assuming evenly spaced data:
def centers_to_edges(arr):
dx = arr[1]-arr[0]
newarr = np.linspace(arr.min()-dx/2,arr.max()+dx/2,arr.size+1)
return newarr
Another option is to use imshow with the extent keyword set.
The first approach doesn't play nicely with 2D axes (e.g., as created by meshgrid or indices) and the second discards the axis numbers entirely
Your data is a regular mesh? If it doesn't, you can use griddata() to obtain it. I think that if your data is too big, a sub-sampling or regularization always is possible. If the data is too big, maybe your output image always will be small compared with it and you can exploit this.
If you use imshow() with "extent" and "interpolation='nearest'", you will see that the data is cell-centered, and extent provided the lower edges of cells (corners). On the other hand, contour assumes that the data is cell-centered, and X,Y must be the center of cells. So, you need to be care about the input domain for contour. The trivial example is:
x = np.arange(-10,10,1)
X,Y = np.meshgrid(x,x)
P = X**2+Y**2
imshow(P,extent=[-10,10,-10,10],interpolation='nearest',origin='lower')
contour(X+0.5,Y+0.5,P,20,colors='k')
My tests told me that pcolormesh() is a very slow routine, and I always try to avoid it. griddata and imshow() always is a good choose for me.
I have sampled data and plot it with imshow():
I would like to interpolate just in horizontal axis so that I can easier distinguish samples and spot features.
Is it possible to make interpolation just in one direction with MPL?
Update:
SciPy has whole package with various interpolation methods.
I used simplest interp1d, as suggested by tcaswell:
def smooth_inter_fun(r):
s = interpolate.interp1d(arange(len(r)), r)
xnew = arange(0, len(r)-1, .1)
return s(xnew)
new_data = np.vstack([smooth_inter_fun(r) for r in data])
Linear and cubic results:
As expected :)
This tutorial covers a range of interpolation available in numpy/scipy. If you want to just one direction, I would work on each row independently and then re-assemble the results. You might also be interested is simply smoothing your data (exmple, Python Smooth Time Series Data, Using strides for an efficient moving average filter).
def smooth_inter_fun(r):
#what ever process you want to use
new_data = np.vstack([smooth_inter_fun(r) for r in data])