Calculating implied volatility using Scipy optimize brentq error - optimization

I want to calculate implied volatility using scipy optimise brent root finding algorithm:
def calcimpliedvol(S,K,T,r,marketoptionPrice):
d1=(np.log(S/K)+(r-0.5*sigma**2)*T)/(sigma*np.sqrt(T))
d2=d1-(sigma*np.sqrt(T))
BSprice_call=S*si.norm.cdf(d1,0,1)-K*np.exp(-r*T)*si.norm.cdf(d2,0,1)
fx=BSprice_call-marketoptionPrice
return optimize.brentq(fx,0,1,maxiter=1000)
However, when I run the function giving it all the inputs specified K=6,S=8,T=0.25,r=0,OptionPrice=4 I get an error saying sigma is not defined. Sigma is what I want to find with the optimisation algorithm.
Could someone please advise what am I doing wrong in defining the function?

There are multiple issues with your code
brentq needs a function as the first argument, that it finds the root of. You passed it a variable. This is the main issue
Black-Scholes formula was wrong (it is (r+0.5*sigma**2) not (r-0.5*sigma**2) for d1)
the code does not work for sigma=0 as you divide by sigma. At the very least you should not pass 0 as one of the bounds. Better yet, handle sigma=0 case separately inside the code
The value of 4 for the option price is very high with S=8, K=6, T=0.25. The implied volatility in this case is 2.18 (ie 218%) which is outside the upper bound you gave your root solver
Here is the corrected code. For the first point note how we defined the function bs_price inside your function that is then passed to the solver. Other issues also addressed
from scipy import optimize
import scipy.stats as si
def calcimpliedvol(S,K,T,r,marketoptionPrice):
def bs_price(sigma):
d1=(np.log(S/K)+(r+0.5*sigma**2)*T)/(sigma*np.sqrt(T))
d2=d1-(sigma*np.sqrt(T))
BSprice_call=S*si.norm.cdf(d1,0,1)-K*np.exp(-r*T)*si.norm.cdf(d2,0,1)
fx=BSprice_call-marketoptionPrice
return fx
return optimize.brentq(bs_price,0.0001,100,maxiter=1000)
calcimpliedvol(S=8,K=6,T=0.25, r=0, marketoptionPrice=4)
it returns 2.188862879492475

Related

shock wave jump conditions

from scipy.optimize import fsolve
x1=input("P1")
y1=input("rho1")
v1=input("velocity1")
def eqn(x): #three jump condition equations
f1=(x[1]*x[2])-(y1*v1)
f2=x[0]+(0.5*(y1**2)*(v1**2)/x[1])-x1-(0.5*y1*v1*v1)
f3=(0.5*(y1**2)*(v1**2)/(x[1]**2))+(2.5*(x[0]/x[1]))-(0.5*v1*v1)-(2.5*(x1/y1))
return(f1,f2,f3)
y=[10,11,12] #initial guess
print fsolve(eqn,y)
`I have to solve three non-linear system of equations also called the jump conditions in shock waves numerically. I have been asked to do so using scipy.optimize where we take three known parameters and use them to find the rest three parameters.
However I'm not getting the correct result and it varies heavily based on the initial guess value.
Following are the relations. I am taking the value of P1, rho1 and V1 from the user and trying the find out the rest three
Your equations seem to be correct apart from a small Python-specific detail. The solution turns out to be very simple: convert all inputs to floats.
x1=float(input("P1"))
y1=float(input("rho1"))
v1=float(input("velocity1"))
The problem was that x1/y1 in the expression for f3 was evaluated with integer division (which truncates the result) instead of floating-point division.
This means you probably tested with integer values. Giving the original code float-format inputs (e.g. 5.0, 14.0, 3.0) also worked as expected.

Machine learning: why the cost function does not need to be derivable?

I was playing around with Tensorflow creating a customized loss function and this question about general machine learning arose to my head.
My understanding is that the optimization algorithm needs a derivable cost function to find/approach a minimum, however we can use functions that are non-derivable such as the absolute function (there is no derivative when x=0). A more extreme example, I defined my cost function like this:
def customLossFun(x,y):
return tf.sign(x)
and I expected an error when running the code, but it actually worked (it didn't learn anything but it didn't crash).
Am I missing something?
You're missing the fact that the gradient of the sign function is somewhere manually defined in the Tensorflow source code.
As you can see here:
def _SignGrad(op, _):
"""Returns 0."""
x = op.inputs[0]
return array_ops.zeros(array_ops.shape(x), dtype=x.dtype)
the gradient of tf.sign is defined to be always zero. This, of course, is the gradient where the derivate exists, hence everywhere but not in zero.
The tensorflow authors decided to do not check if the input is zero and throw an exception in that specific case
In order to prevent TensorFlow from throwing an error, the only real requirement is that you cost function evaluates to a number for any value of your input variables. From a purely "will it run" perspective, it doesn't know/care about the form of the function its trying to minimize.
In order for your cost function to provide you a meaningful result when TensorFlow uses it to train a model, it additionally needs to 1) get smaller as your model does better and 2) be bounded from below (i.e. it can't go to negative infinity). It's not generally necessary for it to be smooth (e.g. abs(x) has a kink where the sign flips). Tensorflow is always able to compute gradients at any location using automatic differentiation (https://en.wikipedia.org/wiki/Automatic_differentiation, https://www.tensorflow.org/versions/r0.12/api_docs/python/train/gradient_computation).
Of course, those gradients are of more use if you've chose a meaningful cost function isn't isn't too flat.
Ideally, the cost function needs to be smooth everywhere to apply gradient based optimization methods (SGD, Momentum, Adam, etc). But nothing's going to crash if it's not, you can just have issues with convergence to a local minimum.
When the function is non-differentiable at a certain point x, it's possible to get large oscillations if the neural network converges to this x. E.g., if the loss function is tf.abs(x), it's possible that the network weights are mostly positive, so the inference x > 0 at all times, so the network won't notice tf.abs. However, it's more likely that x will bounce around 0, so that the gradient is arbitrarily positive and negative. If the learning rate is not decaying, the optimization won't converge to the local minimum, but will bound around it.
In your particular case, the gradient is zero all the time, so nothing's going to change at all.
If it didn't learn anything, what have you gained ? Your loss function is differentiable almost everywhere but it is flat almost anywhere so the minimizer can't figure out the direction towards the minimum.
If you start out with a positive value, it will most likely be stuck at a random value on the positive side even though the minima on the left side are better (have a lower value).
Tensorflow can be used to do calculations in general and it provides a mechanism to automatically find the derivative of a given expression and can do so across different compute platforms (CPU, GPU) and distributed over multiple GPUs and servers if needed.
But what you implement in Tensorflow does not necessarily have to be a goal function to be minimized. You could use it e.g. to throw random numbers and perform Monte Carlo integration of a given function.

Maximizing Likelihood, Julia

I have a log-likelihood function and I want to maximize it in respect to theta (N), and it is defined as:
function loglik(theta,n,r)
N=theta;k=length(n);
ar1=float(lgamma(N+1));ar2=sum(n)*log(sum(n)/(k*N));ar3=(k*N-sum(n))*log(1-(sum(n))/(k*N));
par=float(lgamma((N-r)+1));
return(-(ar1+ar2+ar3-par)) end
The I use Optim.jl's optimize function as:
r=optimize(b->loglik(b,nn, 962), 978, BFGS() );
Where nn is an array. And I get this error:
ERROR:MethodError no method matching optimize (::#46#47,::Float64, ::Optim.BFGS)
Can anyone help?
You're almost there! You need to initialize it with an array.
optimize(b->loglik(first(b),nn,962), [978.,], BFGS())
(though you still need to provide us with nn for this answer to show the output)
edit: since b is a scalar in loglik, I changed it to b->loglik(first(b),nn, 962) as suggested by Chris Rackauckas below.

Errors to fit parameters of scipy.optimize

I use the scipy.optimize.minimize ( https://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html ) function with method='L-BFGS-B.
An example of what it returns is here above:
fun: 32.372210618549758
hess_inv: <6x6 LbfgsInvHessProduct with dtype=float64>
jac: array([ -2.14583906e-04, 4.09272616e-04, -2.55795385e-05,
3.76587650e-05, 1.49213975e-04, -8.38440428e-05])
message: 'CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH'
nfev: 420
nit: 51
status: 0
success: True
x: array([ 0.75739412, -0.0927572 , 0.11986434, 1.19911266, 0.27866406,
-0.03825225])
The x value correctly contains the fitted parameters. How do I compute the errors associated to those parameters?
TL;DR: You can actually place an upper bound on how precisely the minimization routine has found the optimal values of your parameters. See the snippet at the end of this answer that shows how to do it directly, without resorting to calling additional minimization routines.
The documentation for this method says
The iteration stops when (f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= ftol.
Roughly speaking, the minimization stops when the value of the function f that you're minimizing is minimized to within ftol of the optimum. (This is a relative error if f is greater than 1, and absolute otherwise; for simplicity I'll assume it's an absolute error.) In more standard language, you'll probably think of your function f as a chi-squared value. So this roughly suggests that you would expect
Of course, just the fact that you're applying a minimization routine like this assumes that your function is well behaved, in the sense that it's reasonably smooth and the optimum being found is well approximated near the optimum by a quadratic function of the parameters xi:
where Δxi is the difference between the found value of parameter xi and its optimal value, and Hij is the Hessian matrix. A little (surprisingly nontrivial) linear algebra gets you to a pretty standard result for an estimate of the uncertainty in any quantity X that's a function of your parameters xi:
which lets us write
That's the most useful formula in general, but for the specific question here, we just have X = xi, so this simplifies to
Finally, to be totally explicit, let's say you've stored the optimization result in a variable called res. The inverse Hessian is available as res.hess_inv, which is a function that takes a vector and returns the product of the inverse Hessian with that vector. So, for example, we can display the optimized parameters along with the uncertainty estimates with a snippet like this:
ftol = 2.220446049250313e-09
tmp_i = np.zeros(len(res.x))
for i in range(len(res.x)):
tmp_i[i] = 1.0
hess_inv_i = res.hess_inv(tmp_i)[i]
uncertainty_i = np.sqrt(max(1, abs(res.fun)) * ftol * hess_inv_i)
tmp_i[i] = 0.0
print('x^{0} = {1:12.4e} ± {2:.1e}'.format(i, res.x[i], uncertainty_i))
Note that I've incorporated the max behavior from the documentation, assuming that f^k and f^{k+1} are basically just the same as the final output value, res.fun, which really ought to be a good approximation. Also, for small problems, you can just use np.diag(res.hess_inv.todense()) to get the full inverse and extract the diagonal all at once. But for large numbers of variables, I've found that to be a much slower option. Finally, I've added the default value of ftol, but if you change it in an argument to minimize, you would obviously need to change it here.
One approach to this common problem is to use scipy.optimize.leastsq after using minimize with 'L-BFGS-B' starting from the solution found with 'L-BFGS-B'. That is, leastsq will (normally) include and estimate of the 1-sigma errors as well as the solution.
Of course, that approach makes several assumption, including that leastsq can be used and may be appropriate for solving the problem. From a practical view, this requires the objective function return an array of residual values with at least as many elements as variables, not a cost function.
You may find lmfit (https://lmfit.github.io/lmfit-py/) useful here: It supports both 'L-BFGS-B' and 'leastsq' and gives a uniform wrapper around these and other minimization methods, so that you can use the same objective function for both methods (and specify how to convert the residual array into the cost function). In addition, parameter bounds can be used for both methods. This makes it very easy to first do a fit with 'L-BFGS-B' and then with 'leastsq', using the values from 'L-BFGS-B' as starting values.
Lmfit also provides methods to more explicitly explore confidence limits on parameter values in more detail, in case you suspect the simple but fast approach used by leastsq might be insufficient.
It really depends what you mean by "errors". There is no general answer to your question, because it depends on what you're fitting and what assumptions you're making.
The easiest case is one of the most common: when the function you are minimizing is a negative log-likelihood. In that case the inverse of the hessian matrix returned by the fit (hess_inv) is the covariance matrix describing the Gaussian approximation to the maximum likelihood.The parameter errors are the square root of the diagonal elements of the covariance matrix.
Beware that if you are fitting a different kind of function or are making different assumptions, then that doesn't apply.

scipy.optimize.fmin_l_bfgs_b returns 'ABNORMAL_TERMINATION_IN_LNSRCH'

I am using scipy.optimize.fmin_l_bfgs_b to solve a gaussian mixture problem. The means of mixture distributions are modeled by regressions whose weights have to be optimized using EM algorithm.
sigma_sp_new, func_val, info_dict = fmin_l_bfgs_b(func_to_minimize, self.sigma_vector[si][pj],
args=(self.w_vectors[si][pj], Y, X, E_step_results[si][pj]),
approx_grad=True, bounds=[(1e-8, 0.5)], factr=1e02, pgtol=1e-05, epsilon=1e-08)
But sometimes I got a warning 'ABNORMAL_TERMINATION_IN_LNSRCH' in the information dictionary:
func_to_minimize value = 1.14462324063e-07
information dictionary: {'task': b'ABNORMAL_TERMINATION_IN_LNSRCH', 'funcalls': 147, 'grad': array([ 1.77635684e-05, 2.87769808e-05, 3.51718654e-05,
6.75015599e-06, -4.97379915e-06, -1.06581410e-06]), 'nit': 0, 'warnflag': 2}
RUNNING THE L-BFGS-B CODE
* * *
Machine precision = 2.220D-16
N = 6 M = 10
This problem is unconstrained.
At X0 0 variables are exactly at the bounds
At iterate 0 f= 1.14462D-07 |proj g|= 3.51719D-05
* * *
Tit = total number of iterations
Tnf = total number of function evaluations
Tnint = total number of segments explored during Cauchy searches
Skip = number of BFGS updates skipped
Nact = number of active bounds at final generalized Cauchy point
Projg = norm of the final projected gradient
F = final function value
* * *
N Tit Tnf Tnint Skip Nact Projg F
6 1 21 1 0 0 3.517D-05 1.145D-07
F = 1.144619474757747E-007
ABNORMAL_TERMINATION_IN_LNSRCH
Line search cannot locate an adequate point after 20 function
and gradient evaluations. Previous x, f and g restored.
Possible causes: 1 error in function or gradient evaluation;
2 rounding error dominate computation.
Cauchy time 0.000E+00 seconds.
Subspace minimization time 0.000E+00 seconds.
Line search time 0.000E+00 seconds.
Total User time 0.000E+00 seconds.
I do not get this warning every time, but sometimes. (Most get 'CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL' or 'CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH').
I know that it means the minimum can be be reached in this iteration. I googled this problem. Someone said it occurs often because the objective and gradient functions do not match. But here I do not provide gradient function because I am using 'approx_grad'.
What are the possible reasons that I should investigate? What does it mean by "rounding error dominate computation"?
======
I also find that the log-likelihood does not monotonically increase:
########## Convergence !!! ##########
log_likelihood_history: [-28659.725891322563, 220.49993177669558, 291.3513633060345, 267.47745327823907, 265.31567762171181, 265.07311121000367, 265.04217683341682]
It usually start decrease at the second or the third iteration, even through 'ABNORMAL_TERMINATION_IN_LNSRCH' does not occurs. I do not know whether it this problem is related to the previous one.
Scipy calls the original L-BFGS-B implementation. Which is some fortran77 (old but beautiful and superfast code) and our problem is that the descent direction is actually going up. The problem starts on line 2533 (link to the code at the bottom)
gd = ddot(n,g,1,d,1)
if (ifun .eq. 0) then
gdold=gd
if (gd .ge. zero) then
c the directional derivative >=0.
c Line search is impossible.
if (iprint .ge. 0) then
write(0,*)' ascent direction in projection gd = ', gd
endif
info = -4
return
endif
endif
In other words, you are telling it to go down the hill by going up the hill. The code tries something called line search a total of 20 times in the descent direction that you provide and realizes that you are NOT telling it to go downhill, but uphill. All 20 times.
The guy who wrote it (Jorge Nocedal, who by the way is a very smart guy) put 20 because pretty much that's enough. Machine epsilon is 10E-16, I think 20 is actually a little too much. So, my money for most people having this problem is that your gradient does not match your function.
Now, it could also be that "2. rounding errors dominate computation". By this, he means that your function is a very flat surface in which increases are of the order of machine epsilon (in which case you could perhaps rescale the function),
Now, I was thiking that maybe there should be a third option, when your function is too weird. Oscillations? I could see something like $\sin({\frac{1}{x}})$ causing this kind of problem. But I'm not a smart guy, so don't assume that there's a third case.
So I think the OP's solution should be that your function is too flat. Or look at the fortran code.
https://github.com/scipy/scipy/blob/master/scipy/optimize/lbfgsb/lbfgsb.f
Here's line search for those who want to see it. https://en.wikipedia.org/wiki/Line_search
Note. This is 7 months too late. I put it here for future's sake.
As pointed out in the answer by Wilmer E. Henao, the problem is probably in the gradient. Since you are using approx_grad=True, the gradient is calculated numerically. In this case, reducing the value of epsilon, which is the step size used for numerically calculating the gradient, can help.
I also got the error "ABNORMAL_TERMINATION_IN_LNSRCH" using the L-BFGS-B optimizer.
While my gradient function pointed in the right direction, I rescaled the actual gradient of the function by its L2-norm. Removing that or adding another appropriate type of rescaling worked. Before, I guess that the gradient was so large that it went out of bounds immediately.
The problem from OP was unbounded if I read correctly, so this will certainly not help in this problem setting. However, googling the error "ABNORMAL_TERMINATION_IN_LNSRCH" yields this page as one of the first results, so it might help others...
I had a similar problem recently. I sometimes encounter the ABNORMAL_TERMINATION_IN_LNSRCH message after using fmin_l_bfgs_b function of scipy. I try to give additional explanations of the reason why I get this. I am looking for complementary details or corrections if I am wrong.
In my case, I provide the gradient function, so approx_grad=False. My cost function and the gradient are consistent. I double-checked it and the optimization actually works most of the time. When I get ABNORMAL_TERMINATION_IN_LNSRCH, the solution is not optimal, not even close (even this is a subjective point of view). I can overcome this issue by modifying the maxls argument. Increasing maxls helps to solve this issue to finally get the optimal solution. However, I noted that sometimes a smaller maxls, than the one that produces ABNORMAL_TERMINATION_IN_LNSRCH, results in a converging solution. A dataframe summarizes the results. I was surprised to observe this. I expected that reducing maxls would not improve the result. For this reason, I tried to read the paper describing the line search algorithm but I had trouble to understand it.
The line "search algorithm generates a sequence of
nested intervals {Ik} and a sequence of iterates αk ∈ Ik ∩ [αmin ; αmax] according to the [...] procedure". If I understand well, I would say that the maxls argument specifies the length of this sequence. At the end of the maxls iterations (or less if the algorithm terminates in fewer iterations), the line search stops. A final trial point is generated within the final interval Imaxls. I would say the the formula does not guarantee to get an αmaxls that respects the two update conditions, the minimum decrease and the curvature, especially when the interval is still wide. My guess is that in my case, after 11 iterations the generated interval I11 is such that a trial point α11 respects both conditions. But, even though I12 is smaller and still containing acceptable points, α12 is not. Finally after 24 iterations, the interval is very small and the generated αk respects the update conditions.
Is my understanding / explanation accurate?
If so, I would then be surprised that when maxls=12, since the generated α11 is acceptable but not α12, why α11 is not chosen in this case instead of α12?
Pragmatically, I would recommend to try a few higher maxls when getting ABNORMAL_TERMINATION_IN_LNSRCH.