Hyperloglog for Tinkerpop, .count() approximation - tinkerpop

Is there a solution similar to Hyperloglog for graph databases like Tinkerpop. .count() step takes forever on large dataset, however approximation would be sufficient

For TinkerPop-enabled graph systems, the solution for "counting" is typically handled by Gremlin OLAP (typically with Spark). Some graphs may optimize for things like counts - as a very simple example TinkerGraph detects something like g.V().count() and bypasses the process of iterating all vertices to count them up. Also, some graphs may also provide their own APIs for providing "counts" so it is worth learning a bit about the graph you are using to determine if such capabilities exist.

Related

how are histograms constructed in sklearn's HistGradientBoostingClassifier to decide on best split point

Both lightgbm and sklearn's HistGradientBoostingClassifier estimators use histograms to decide on best splits for continuous features.
Is it possible to explain intuitively (or with some example) the process of histogram creation and how does it help in deciding in faster split point at a node.
I have looked for answers extensively over the Internet but could not find any simple or intuitive way as to how histograms are constructed.
I am not sure but it could be related to how (unique) Regression trees are constructed in XGBoost. For a continuous feature, you construct an histogram, decide on the split (e.g. weight < 70kg), construct a Regression tree and compute the Similarity score as well as the Gain. However, when the range of the values in the continuous feature is quite large then it is quite computationally expensive to try all the possible split values. In that case, XGBoost basically makes the split by making use of the quantiles which involves dividing all the observations into equally sized sets.
I guess sklearn's HistGradientBoostingClassifier might involve the above tool optimization as well for coming up with the best split.

What is the relationship between BlazingSQL and dask?

I'm trying to understand if BlazingSQL is a competitor or complementary to dask.
I have some medium-sized data (10-50GB) saved as parquet files on Azure blob storage.
IIUC I can query, join, aggregate, groupby with BlazingSQL using SQL syntax, but I can also read the data into CuDF using dask_cudf and do all same operations using python/dataframe syntax.
So, it seems to me that they're direct competitors?
Is it correct that (one of) the benefits of using dask is that it can operate on partitions so can operate on datasets larger than GPU memory whereas BlazingSQL is limited to what can fit on the GPU?
Why would one choose to use BlazingSQL rather than dask?
Edit:
The docs talk about dask_cudf but the actual repo is archived saying that dask support is now in cudf itself. It would be good to know how to leverage dask to operate on larger-than-gpu-memory datasets with cudf
Full disclosure I'm a co-founder of BlazingSQL.
BlazingSQL and Dask are not competitive, in fact you need Dask to use BlazingSQL in a distributed context. All distibured BlazingSQL results return dask_cudf result sets, so you can then continuer operations on said results in python/dataframe syntax. To your point, you are correct on two counts:
BlazingSQL is currently limited to GPU memory, and actually some system memory by leveraging CUDA's Unified Virtual Memory. That will change soon, we are estimating around v0.13 which is scheduled for an early March release. Upon that release, memory will spill off and cache to system memory, local drives, or even our supported storage plugins such as AWS S3, Google Cloud Storage, and HDFS.
You can totally write SQL operations as dask_cudf functions, but it is incumbent on the user to know all of those functions, and optimize their usage of them. SQL has a variety of benefits in that it is more accessible (more people know it, and it's very easy to learn), and there is a great deal of research around optimizing SQL (cost-based optimizers for example) for running queries at scale.
If you wish to make RAPIDS accessible to more users SQL is a pretty easy onboarding process, and it's very easy to optimize for because of the reduced scope necessary to optimize SQL operations over Dask which has many other considerations.

Computing result over batches while caching an expensive operation

I'm interested in running the same computational graph for many different batches, passed using a feed_dict. However, the graph contains a single very expensive operation, which remains constant for all batches. I would like to find a solution that does not require recomputing this expensive operation.
Currently, I have only found suggestions involving Session.partial_run(). However, it seems that you cannot pass re-run the same sub-graph for different feed_dicts. This is discussed here, where the code follows pretty much exactly what I want to do.
Is there any way of re-running for multiple batches, without re-computing an unchanging and expensive part of the graph?

Travelling Salesman and Map/Reduce: Abandon Channel

This is an academic rather than practical question. In the Traveling Salesman Problem, or any other which involves finding a minimum optimization ... if one were using a map/reduce approach it seems like there would be some value to having some means for the current minimum result to be broadcast to all of the computational nodes in some manner that allows them to abandon computations which exceed that.
In other words if we map the problem out we'd like each node to know when to give up on a given partial result before it's complete but when it's already exceeded some other solution.
One approach that comes immediately to mind would be if the reducer had a means to provide feedback to the mapper. Consider if we had 100 nodes, and millions of paths being fed to them by the mapper. If the reducer feeds the best result to the mapper than that value could be including as an argument along with each new path (problem subset). In this approach the granularity is fairly rough ... the 100 nodes will each keep grinding away on their partition of the problem to completion and only get the new minimum with their next request from the mapper. (For a small number of nodes and a huge number of problem partitions/subsets to work across this granularity would be inconsequential; also it's likely that one could apply heuristics to the sequence in which the possible routes or problem subsets are fed to the nodes to get a rapid convergence towards the optimum and thus minimize the amount of "wasted" computation performed by the nodes).
Another approach that comes to mind would be for the nodes to be actively subscribed to some sort of channel, or multicast or even broadcast from which they could glean new minimums from their computational loop. In that case they could immediately abandon a bad computation when notified of a better solution (by one of their peers).
So, my questions are:
Is this concept covered by any terms of art in relation to existing map/reduce discussions
Do any of the current map/reduce frameworks provide features to support this sort of dynamic feedback?
Is there some flaw with this idea ... some reason why it's stupid?
that's a cool theme, that doesn't have that much literature, that was done on it before. So this is pretty much a brainstorming post, rather than an answer to all your problems ;)
So every TSP can be expressed as a graph, that looks possibly like this one: (taken it from the german Wikipedia)
Now you can run a graph algorithm on it. MapReduce can be used for graph processing quite well, although it has much overhead.
You need a paradigm that is called "Message Passing". It was described in this paper here: Paper.
And I blog'd about it in terms of graph exploration, it tells quite simple how it works. My Blogpost
This is the way how you can tell the mapper what is the current minimum result (maybe just for the vertex itself).
With all the knowledge in the back of the mind, it should be pretty standard to think of a branch and bound algorithm (that you described) to get to the goal. Like having a random start vertex and branching to every adjacent vertex. This causes a message to be send to each of this adjacents with the cost it can be reached from the start vertex (Map Step). The vertex itself only updates its cost if it is lower than the currently stored cost (Reduce Step). Initially this should be set to infinity.
You're doing this over and over again until you've reached the start vertex again (obviously after you visited every other one). So you have to somehow keep track of the currently best way to reach a vertex, this can be stored in the vertex itself, too. And every now and then you have to bound this branching and cut off branches that are too costly, this can be done in the reduce step after reading the messages.
Basically this is just a mix of graph algorithms in MapReduce and a kind of shortest paths.
Note that this won't yield to the optimal way between the nodes, it is still a heuristic thing. And you're just parallizing the NP-hard problem.
BUT a little self-advertising again, maybe you've read it already in the blog post I've linked, there exists an abstraction to MapReduce, that has way less overhead in this kind of graph processing. It is called BSP (Bulk synchonous parallel). It is more freely in the communication and it's computing model. So I'm sure that this can be a lot better implemented with BSP than MapReduce. You can realize these channels you've spoken about better with it.
I'm currently involved in an Summer of Code project which targets these SSSP problems with BSP. Maybe you want to visit if you're interested. This could then be a part solution, it is described very well in my blog, too. SSSP's in my blog
I'm excited to hear some feedback ;)
It seems that Storm implements what I was thinking of. It's essentially a computational topology (think of how each compute node might be routing results based on a key/hashing function to the specific reducers).
This is not exactly what I described, but might be useful if one had a sufficiently low-latency way to propagate current bounding (i.e. local optimum information) which each node in the topology could update/receive in order to know which results to discard.

What statistics concepts are useful for profiling?

I've been meaning to do a little bit of brushing up on my knowledge of statistics. One area where it seems like statistics would be helpful is in profiling code. I say this because it seems like profiling almost always involves me trying to pull some information from a large amount of data.
Are there any subjects in statistics that I could brush up on to get a better understanding of profiler output? Bonus points if you can point me to a book or other resource that will help me understand these subjects better.
I'm not sure books on statistics are that useful when it comes to profiling. Running a profiler should give you a list of functions and the percentage of time spent in each. You then look at the one that took the most percentage wise and see if you can optimise it in any way. Repeat until your code is fast enough. Not much scope for standard deviation or chi squared there, I feel.
All I know about profiling is what I just read in Wikipedia :-) but I do know a fair bit about statistics. The profiling article mentioned sampling and statistical analysis of sampled data. Clearly statistical analysis will be able to use those samples to develop some statistical statements on performance. Let's say you have some measure of performance, m, and you sample that measure 1000 times. Let's also say you know something about the underlying processes that created that value of m. For instance, if m is the SUM of a bunch of random variates, the distribution of m is probably normal. If m is the PRODUCT of a bunch of random variates, the distribution is probably lognormal. And so on...
If you don't know the underlying distribution and you want to make some statement about comparing performance, you may need what are called non-parametric statistics.
Overall, I'd suggest any standard text on statistical inference (DeGroot), a text that covers different probability distributions and where they're applicable (Hastings & Peacock), and a book on non-parametric statistics (Conover). Hope this helps.
Statistics is fun and interesting, but for performance tuning, you don't need it. Here's an explanation why, but a simple analogy might give the idea.
A performance problem is like an object (which may actually be multiple connected objects) buried under an acre of snow, and you are trying to find it by probing randomly with a stick. If your stick hits it a couple of times, you've found it - it's exact size is not so important. (If you really want a better estimate of how big it is, take more probes, but that won't change its size.) The number of times you have to probe the snow before you find it depends on how much of the area of the snow it is under.
Once you find it, you can pull it out. Now there is less snow, but there might be more objects under the snow that remains. So with more probing, you can find and remove those as well. In this way, you can keep going until you can't find anything more that you can remove.
In software, the snow is time, and probing is taking random-time samples of the call stack. In this way, it is possible to find and remove multiple problems, resulting in large speedup factors.
And statistics has nothing to do with it.
Zed Shaw, as usual, has some thoughts on the subject of statistics and programming, but he puts them much more eloquently than I could.
I think that the most important statistical concept to understand in this context is Amdahl's law. Although commonly referred to in contexts of parallelization, Amdahl's law has a more general interpretation. Here's an excerpt from the Wikipedia page:
More technically, the law is concerned
with the speedup achievable from an
improvement to a computation that
affects a proportion P of that
computation where the improvement has
a speedup of S. (For example, if an
improvement can speed up 30% of the
computation, P will be 0.3; if the
improvement makes the portion affected
twice as fast, S will be 2.) Amdahl's
law states that the overall speedup of
applying the improvement will be
I think one concept related to both statistics and profiling (your original question) that is very useful and used by some (you see the technique advised from time to time) is while doing "micro profiling": a lot of programmers will rally and yell "you can't micro profile, micro profiling simply doesn't work, too many things can influence your computation".
Yet simply run n times your profiling, and keep only x% of your observations, the ones around the median, because the median is a "robust statistic" (contrarily to the mean) that is not influenced by outliers (outliers being precisely the value you want to not take into account when doing such profiling).
This is definitely a very useful statistician technique for programmers who want to micro-profile their code.
If you apply the MVC programming method with PHP this would be what you need to profile:
Application:
Controller Setup time
Model Setup time
View Setup time
Database
Query - Time
Cookies
Name - Value
Sessions
Name - Value