In this paper (Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference) published by google, quantization scheme is described as follows:
Where,
M = S1 * S2 / S3
S1, S2 and S3 are scales of inputs and output respectively.
Both S1 (and zero point Z1) and S2 (and zero point Z2) can be determined easily, whether "offline" or "online". But what about S3 (and zero point Z3)? These parameters are dependent on "actual" output scale (i.e., the float value without quantization). But output scale is unknown before it is computed.
According to the tensorflow documentation:
At inference, weights are converted from 8-bits of precision to floating point and computed using floating-point kernels. This conversion is done once and cached to reduce latency.
But the code below says something different:
tensor_utils::BatchQuantizeFloats(
input_ptr, batch_size, input_size, quant_data, scaling_factors_ptr,
input_offset_ptr, params->asymmetric_quantize_inputs);
for (int b = 0; b < batch_size; ++b) {
// Incorporate scaling of the filter.
scaling_factors_ptr[b] *= filter->params.scale;
}
// Compute output += weight * quantized_input
int32_t* scratch = GetTensorData<int32_t>(accum_scratch);
tensor_utils::MatrixBatchVectorMultiplyAccumulate(
filter_data, num_units, input_size, quant_data, scaling_factors_ptr,
batch_size, GetTensorData<float>(output), /*per_channel_scale=*/nullptr,
input_offset_ptr, scratch, row_sums_ptr, &data->compute_row_sums,
CpuBackendContext::GetFromContext(context));
Here we can see:
scaling_factors_ptr[b] *= filter->params.scale;
I think this means:
S1 * S2 is computed.
The weights are still integers. Just the final results are floats.
It seems S3 and Z3 don't have to be computed. But if so, how can the final float results be close to the unquantized results?
This inconsistency between paper, documentation and code makes me very confused. I can't tell what I miss. Can anyone help me?
Let me answer my own question. All of a sudden I saw what I missed when I was
riding bicycle. The code in the question above is from the function
tflite::ops::builtin::fully_connected::EvalHybrid(). Here the
name has explained everything! Value in the output of matrix multiplication is
denoted as r3 in section 2.2 of the paper. In terms of equation
(2) in section 2.2, we have:
If we want to get the float result of matrix multiplication, we can use equation (4) in section 2.2, then convert the result back to floats, OR we can use equation (3) with the left side replaced with r3, as in:
If we choose all the zero points to be 0, then the formula above becomes:
And this is just what EvalHybrid() does (ignoring the bias for the moment). Turns out the paper gives an outline of the quantization algorithm, while the implementation uses different variants.
Related
In order to prevent divisions by zero in TensorFlow, I want to add a tiny number to my dividend. A quick search did not yield any results. In particular, I am interested in using the scientific notation, e.g.
a = b/(c+1e-05)
How can this be achieved?
Assuming a, b and c are tensors. The formula you have written will work as expected. 1e-5 will be broadcasted and added on the tensor c. Tensorflow automatically typecasts the 1e-5 to tf.constant(1e-5).
Tensorflow however has some limitations with non-scalar broadcasts. Take a look at my other answer.
Starting from the universal-sentence-encoder in TensorFlow.js, I noticed that the range of the numbers in the embeddings wasn't what I expected. I was expecting some distribution between [0-1] or [-1,1] but don't see either of these.
For the sentence "cats are great!" here's a visualization, where each dimension is projected onto a scale from [-0.5, 0.5]:
Here's the same kind of visualization for "i wonder what this sentence's embedding will be" (the pattern is similar for the first ~10 sentences I tried):
To debug, I looked at whether the same kind of thing comes up in the demo Colab notebook, and it seems like it is. Here's what I see if I see for the range of the embeddings for those two sentences:
# NEW: added this, with different messages
messages = ["cats are great!", "sometimes models are confusing"]
values, indices, dense_shape = process_to_IDs_in_sparse_format(sp, messages)
with tf.Session() as session:
session.run([tf.global_variables_initializer(), tf.tables_initializer()])
message_embeddings = session.run(
encodings,
feed_dict={input_placeholder.values: values,
input_placeholder.indices: indices,
input_placeholder.dense_shape: dense_shape})
for i, message_embedding in enumerate(np.array(message_embeddings).tolist()):
print("Message: {}".format(messages[i]))
print("Embedding size: {}".format(len(message_embedding)))
message_embedding_snippet = ", ".join(
(str(x) for x in message_embedding[:3]))
print("Embedding: [{}, ...]\n".format(message_embedding_snippet))
# NEW: added this, to show the range of the embedding output
print("Embedding range: [{}, {}]".format(min(message_embedding), max(message_embedding)))
And the output shows:
Message: cats are great!
Embedding range: [-0.05904272198677063, 0.05903803929686546]
Message: sometimes models are confusing
Embedding range: [-0.060731519013643265, 0.06075377017259598]
So this again isn't what I'm expecting - the range is more narrow than I'd expect. I thought this might be a TF convention that I missed, but couldn't see it in the TFHub page or the guide to text embeddings or in the paper so am not sure where else to look without digging into the training code.
The colab notebook example code has an example sentence that says:
Universal Sentence Encoder embeddings also support short paragraphs.
There is no hard limit on how long the paragraph is. Roughly, the
longer the more 'diluted' the embedding will be.
But the range of the embedding is roughly the same for all the other examples in the colab, even one word examples.
I'm assuming this range is not just arbitrary, and it does make sense to me that the range is centered in zero and small, but I'm trying to understand how this scale came to be.
The output of the universal sentence encoder is a vector of length 512, with an L2 norm of (approximately) 1.0. You can check this by calculating the inner product
ip = 0
for i in range(512):
ip += message_embeddings[0][i] * message_embeddings[0][i]
print(ip)
> 1.0000000807544893
The implications are that:
Most values are likely to be in a narrow range centered around zero
The largest possible single value in the vector is 1.0 - and this would only happen if all other values are exactly 0.
Similarly the smallest possible value is -1.
If we take a random vector of length 512, with values distributed uniformly, and then normalize it to unit magnitude, we expect to see values in a range similar to what you see.
rand_uniform = np.random.uniform(-1, 1, 512)
l2 = np.linalg.norm(rand_uniform)
plt.plot(rand_uniform / l2, 'b.')
axes = plt.gca()
axes.set_ylim([-0.5, 0.5])
Judging visually, the distribution of excitations does not look uniform, but rather is biased toward extremes.
I've come across a from scratch implementation for gaussian processes:
http://krasserm.github.io/2018/03/19/gaussian-processes/
There, the isotropic squared exponential kernel is implemented in numpy. It looks like:
The implementation is:
def kernel(X1, X2, l=1.0, sigma_f=1.0):
sqdist = np.sum(X1**2, 1).reshape(-1, 1) + np.sum(X2**2, 1) - 2 * np.dot(X1, X2.T)
return sigma_f**2 * np.exp(-0.5 / l**2 * sqdist)
consistent with the implementation of Nando de Freitas: https://www.cs.ubc.ca/~nando/540-2013/lectures/gp.py
However, I am not quite sure how this implementation matches the provided formula, especially in the sqdist part. In my opinion, it is wrong but it works (and delivers the same results as scipy's cdist with squared euclidean distance). Why do I think it is wrong? If you multiply out the multiplication of the two matrices, you get
which equals to either a scalar or a nxn matrix for a vector x_i, depending on whether you define x_i to be a column vector or not. The implementation however gives back a nx1 vector with the squared values.
I hope that anyone can shed light on this.
I found out: The implementation is correct. I just was not aware of the fuzzy notation (in my opinion) which is sometimes used in ML contexts. What is to be achieved is a distance matrix and each row vectors of matrix A are to be compared with the row vectors of matrix B to infer the covariance matrix, not (as I somehow guessed) the direct distance between two matrices/vectors.
To be clear, I am referring to "self-attention" of the type described in Hierarchical Attention Networks for Document Classification and implemented many places, for example: here. I am not referring to the seq2seq type of attention used in encoder-decoder models (i.e. Bahdanau), although my question might apply to that as well... I am just not as familiar with it.
Self-attention basically just computes a weighted average of RNN hidden states (a generalization of mean-pooling, i.e. un-weighted average). When there are variable length sequences in the same batch, they will typically be zero-padded to the length of the longest sequence in the batch (if using dynamic RNN). When the attention weights are computed for each sequence, the final step is a softmax, so the attention weights sum to 1.
However, in every attention implementation I have seen, there is no care taken to mask out, or otherwise cancel, the effects of the zero-padding on the attention weights. This seems wrong to me, but I fear maybe I am missing something since nobody else seems bothered by this.
For example, consider a sequence of length 2, zero-padded to length 5. Ultimately this leads to the attention weights being computed as the softmax of a similarly 0-padded vector, e.g.:
weights = softmax([0.1, 0.2, 0, 0, 0]) = [0.20, 0.23, 0.19, 0.19, 0.19]
and because exp(0)=1, the zero-padding in effect "waters down" the attention weights. This can be easily fixed, after the softmax operation, by multiplying the weights with a binary mask, i.e.
mask = [1, 1, 0, 0, 0]
and then re-normalizing the weights to sum to 1. Which would result in:
weights = [0.48, 0.52, 0, 0, 0]
When I do this, I almost always see a performance boost (in the accuracy of my models - I am doing document classification/regression). So why does nobody do this?
For a while I considered that maybe all that matters is the relative values of the attention weights (i.e., ratios), since the gradient doesn't pass through the zero-padding anyway. But then why would we use softmax at all, as opposed to just exp(.), if normalization doesn't matter? (plus, that wouldn't explain the performance boost...)
Great question! I believe your concern is valid and zero attention scores for the padded encoder outputs do affect the attention. However, there are few aspects that you have to keep in mind:
There are different score functions, the one in tf-rnn-attention uses simple linear + tanh + linear transformation. But even this score function can learn to output negative scores. If you look at the code and imagine inputs consists of zeros, vector v is not necessarily zero due to bias and the dot product with u_omega can boost it further to low negative numbers (in other words, plain simple NN with a non-linearity can make both positive and negative predictions). Low negative scores don't water down the high scores in softmax.
Due to bucketing technique, the sequences within a bucket usually have roughly the same length, so it's unlikely to have half of the input sequence padded with zeros. Of course, it doesn't fix anything, it just means that in real applications negative effect from the padding is naturally limited.
You mentioned it in the end, but I'd like to stress it too: the final attended output is the weighted sum of encoder outputs, i.e. relative values actually matter. Take your own example and compute the weighted sum in this case:
the first one is 0.2 * o1 + 0.23 * o2 (the rest is zero)
the second one is 0.48 * o1 + 0.52 * o2 (the rest is zero too)
Yes, the magnitude of the second vector is two times bigger and it isn't a critical issue, because it goes then to the linear layer. But relative attention on o2 is just 7% higher, than it would have been with masking.
What this means is that even if the attention weights won't do a good job in learning to ignore zero outputs, the end effect on the output vector is still good enough for the decoder to take the right outputs into account, in this case to concentrate on o2.
Hope this convinces you that re-normalization isn't that critical, though probably will speed-up learning if actually applied.
BERT implementation applies a padding mask for calculating attention score.
Adds 0 to the non-padding attention score and adds -10000 to padding attention scores. the e^-10000 is very small w.r.t to other attention score values.
attention_score = [0.1, 0.2, 0, 0, 0]
mask = [0, 0, -10000, -10000] # -10000 is a large negative value
attention_score += mask
weights = softmax(attention_score)
I am trying to use pymc to find a change point in a time-series. The value I am looking at over time is probability to "convert" which is very small, 0.009 on average with a range of 0.001-0.016.
I give the two probabilities a uniform distribution as a prior between zero and the max observation.
alpha = df.cnvrs.max() # Set upper uniform
center_1_c = pm.Uniform("center_1_c", 0, alpha)
center_2_c = pm.Uniform("center_2_c", 0, alpha)
day_c = pm.DiscreteUniform("day_c", lower=1, upper=n_days)
#pm.deterministic
def lambda_(day_c=day_c, center_1_c=center_1_c, center_2_c=center_2_c):
out = np.zeros(n_days)
out[:day_c] = center_1_c
out[day_c:] = center_2_c
return out
observation = pm.Uniform("obs", lambda_, value=df.cnvrs.values, observed=True)
When I run this code I get:
ZeroProbability: Stochastic obs's value is outside its support,
or it forbids its parents' current values.
I'm pretty new to pymc so not sure if I'm missing something obvious. My guess is I might not have appropriate distributions for modelling small probabilities.
It's impossible to tell where you've introduced this bug—and programming is off-topic here, in any case—without more of your output. But there is a statistical issue here: You've somehow constructed a model that cannot produce either the observed variables or the current sample of latent ones.
To give a simple example, say you have a dataset with negative values, and you've assumed it to be gamma distributed; this will produce an error, because the data has zero probability under a gamma. Similarly, an error will be thrown if an impossible value is sampled during an MCMC chain.