Implement backoff strategy in flow - kotlin

I'm trying to implement a backoff strategy just using kotlin flow.
I need to fetch data from timeA to timeB
result = dataBetween(timeA - timeB)
if the result is empty then I want to increase the end time window using exponential backoff
result = dataBetween(timeA - timeB + exponentialBackOffInDays)
I was following this article which is explaining how to approach this in rxjava2.
But got stuck at a point where flow does not have takeUntil operator yet.
You can see my implementation below.
fun main() {
runBlocking {
(0..8).asFlow()
.flatMapConcat { input ->
// To simulate a data source which fetches data based on a time-window start-date to end-date
// available with in that time frame.
flow {
println("Input: $input")
if (input < 5) {
emit(emptyList<String>())
} else { // After emitting this once the flow should complete
emit(listOf("Available"))
}
}.retryWhenThrow(DummyException(), predicate = {
it.isNotEmpty()
})
}.collect {
//println(it)
}
}
}
class DummyException : Exception("Collected size is empty")
private inline fun <T> Flow<T>.retryWhenThrow(
throwable: Throwable,
crossinline predicate: suspend (T) -> Boolean
): Flow<T> {
return flow {
collect { value ->
if (!predicate(value)) {
throw throwable // informing the upstream to keep emitting since the condition is met
}
println("Value: $value")
emit(value)
}
}.catch { e ->
if (e::class != throwable::class) throw e
}
}
It's working fine except even after the flow has a successful value the flow continue to collect till 8 from the upstream flow but ideally, it should have stopped when it reaches 5 itself.
Any help on how I should approach this would be helpful.

Maybe this does not match your exact setup but instead of calling collect, you might as well just use first{...} or firstOrNull{...}
This will automatically stop the upstream flows after an element has been found.
For example:
flowOf(0,0,3,10)
.flatMapConcat {
println("creating list with $it elements")
flow {
val listWithElementCount = MutableList(it){ "" } // just a list of n empty strings
emit(listWithElementCount)
}
}.first { it.isNotEmpty() }
On a side note, your problem sounds like a regular suspend function would be a better fit.
Something like
suspend fun getFirstNonEmptyList(initialFrom: Long, initialTo: Long): List<Any> {
var from = initialFrom
var to = initialTo
while (coroutineContext.isActive) {
val elements = getElementsInRange(from, to) // your "dataBetween"
if (elements.isNotEmpty()) return elements
val (newFrom, newTo) = nextBackoff(from, to)
from = newFrom
to = newTo
}
throw CancellationException()
}

Related

Kotlin flows SharedFlow not received in collectInLifeCycle inside Fragment

I am observing inside a fragment the events of a sharedflow such as this:
myEvent.collectInLifeCycle(viewLifecycleOwner) { event ->
when (state) {
//check the event. The event emited form onStart is never reached here :(
}
}
Whereas in the viewmodel I have
private val _myEvent = MutableSharedFlow<MyEvent>()
val myEvent: SharedFlow<MyEvent> = _myEvent
fun loadData() =
viewModelScope.launch {
getDataUseCase
.safePrepare(onGenericError = { _event.emit(Event.Error(null)) })
.onStart { _event.emit(Event.Loading) }
.onEach { result ->
result.onSuccess { response ->
_event.emit(Event.Something)
}
}
.launchIn(viewModelScope)
}
So the problem is that only the Event.Something is the one being properly collected from the fragment, whereas _event.emit(Event.Loading) is not being collected... If I debug it goes to the onStart, but it is never called in the fragment.
Your SharedFlow needs to have a replay so that collectors always get at least the most recent value. Otherwise, if you emit to the Flow before the collector is registered, it will never see anything emitted. Do this:
private val _myEvent = MutableSharedFlow<MyEvent>(replay = 1)
Personally, unless I'm missing some detail here that would change my mind, I would simplify all your code to avoid having to manually call loadData(). Something like this but I'm guessing a bit because I don't know all your types and functions.
val myEvent: SharedFlow<MyEvent> = flow {
emit(Event.Loading)
emitAll(
getDataUseCase
.transform { result ->
result.onSuccess { response ->
emit(Event.Something)
}
}
.catch { error -> emit(Event.Error(null)) }
)
}.shareIn(viewModelScope, SharingStarted.Lazily, replay = 1)

Getting data from Datastore for injection

I am trying to retrieve the base url from my proto datastore to be used to initialize my ktor client instance I know how to get the data from the datastore but I don't know how to block execution until that value is received so the client can be initialized with the base url
So my ktor client service asks for a NetworkURLS class which has a method to return the base url
Here is my property to retrieve terminalDetails from my proto datastore
val getTerminalDetails: Flow<TerminalDetails> = cxt.terminalDetails.data
.catch { e ->
if (e is IOException) {
Log.d("Error", e.message.toString())
emit(TerminalDetails.getDefaultInstance())
} else {
throw e
}
}
Normally when I want to get the values I would do something like this
private fun getTerminalDetailsFromStore() {
try {
viewModelScope.launch(Dispatchers.IO) {
localRepository.getTerminalDetails.collect {
_terminalDetails.value = it
}
}
} catch(e: Exception) {
Log.d("AdminSettingsViewModel Error", e.message.toString()) // TODO: Handle Error Properly
}
}
but in my current case what I am looking to do is return terminalDetails.backendHost from a function and that where the issue comes in I know I need to use a coroutine scope to retrieve the value so I don't need to suspend the function but how to a prevent the function returning until the coroutine scope has finished?
I have tried using async and runBlocking but async doesn't work the way I would think it would and runBlocking hangs the entire app
fun backendURL(): String = runBlocking {
var url: String = "localhost"
val job = CoroutineScope(Dispatchers.IO).async {
repo.getTerminalDetails.collect {
it.backendHost
}
}
url
}
Can anyone give me some assistance on getting this to work?
EDIT: Here is my temporary solution, I do not intend on keeping it this way, The issue with runBlocking{} turned out to be the Flow<T> does not finish so runBlocking{} continues to block the app.
fun backendURL(): String {
val details = MutableStateFlow<TerminalDetails>(TerminalDetails.getDefaultInstance())
val job = CoroutineScope(Dispatchers.IO).launch {
repo.getTerminalDetails.collect {
details.value = it
}
}
runBlocking {
delay(250L)
}
return details.value.backendHost
}
EDIT 2: I fully fixed my issue. I created a method with the same name as my val (personal decision) which utilizes runBlocking{} and Flow<T>.first() to block while the value is retrieve. The reason I did not replace my val with the function is there are places where I need the information as well where I can utilize coroutines properly where I am not initializing components on my app
val getTerminalDetails: Flow<TerminalDetails> = cxt.terminalDetails.data
.catch { e ->
if (e is IOException) {
Log.d("Error", e.message.toString())
emit(TerminalDetails.getDefaultInstance())
} else {
throw e
}
}
fun getTerminalDetails(): TerminalDetails = runBlocking {
cxt.terminalDetails.data.first()
}

rxjava, how to inspect the result of a Single

using kotlin, having code
fun fetchRemoteDataApi(): Single<RemoteDataResponse> = networkApi.getData()
// it is just a retrofit
#GET(".../api/getData")
fun getData() : Single<RemoteDataResponse>
fun mergeApiWithDb(): Completable = fetchRemoteDataApi()
.zipWith(localDao.getAll())
.flatMapCompletable { (remoteData, localData) ->
doMerge(remoteData, localData) //<== return a Completable
}
the code flow:
val mergeApiDbCall = mergeApiWithDb().onErrorComplete().cache() //<=== would like do some inspection at this level
PublishSubject.create<Unit>().toFlowable(BackpressureStrategy.LATEST)
.compose(Transformers.flowableIO())
.switchMap {
//merge DB with api, or local default value first then listen to DB change
mergeApiDbCall.andThen(listAllTopics())
.concatMapSingle { topics -> remoteTopicUsers.map { topics to it } }
}
.flatMapCompletable { (topics, user) ->
// do something return Completable
}
.subscribe({
...
}, { throwable ->
...
})
and when making the call
val mergeApiDbCall = mergeApiWithDb().onErrorComplete().cache()
the question is if would like to inspect on the Singles<RemoteDataResponse> returned from fetchRemoteDataApi() (i.e. using Log.i(...) to printout the content of RemoteDataResponse, etc.), either in got error or success case, how to do it?
/// the functions
fun listAllTopics(): Flowable<List<String>> = localRepoDao.getAllTopics()
// which a DAO:
#Query("SELECT topic FROM RemoteDataTable WHERE read = 1")
fun getAllTopics(): Flowable<List<String>>
///
private val remoteTopicUsers: Single<List<User>>
get() {
return Single.create {
networkApi.getTopicUsers(object : ICallback.IGetTopicUsersCallback {
override fun onSuccess(result: List<User>) = it.onSuccess(result)
override fun onError(errorCode: Int, errorMsg: String?) = it.onError(Exception(errorCode, errorMsg))
})
}
}
You cannot extract information about elements from the Completable. Though you can use doOnComplete() on Completable, it will not provide you any information about the element.
You can inspect elements if you call doOnSuccess() on your Single, so you need to incorporate this call earlier in your code. To inspect errors you can use doOnError() on both Completable or Single.

How to execute a program with Kotlin and Arrow

I'm trying to learn a bit of Functional Programming using Kotlin and Arrow and in this way I've already read some blogposts like the following one: https://jorgecastillo.dev/kotlin-fp-1-monad-stack, which is good, I've understand the main idea, but when creating a program, I can't figure out how to run it.
Let me be more explicit:
I have the following piece of code:
typealias EitherIO<A, B> = EitherT<ForIO, A, B>
sealed class UserError(
val message: String,
val status: Int
) {
object AuthenticationError : UserError(HttpStatus.UNAUTHORIZED.reasonPhrase, HttpStatus.UNAUTHORIZED.value())
object UserNotFound : UserError(HttpStatus.NOT_FOUND.reasonPhrase, HttpStatus.NOT_FOUND.value())
object InternalServerError : UserError(HttpStatus.INTERNAL_SERVER_ERROR.reasonPhrase, HttpStatus.INTERNAL_SERVER_ERROR.value())
}
#Component
class UserAdapter(
private val myAccountClient: MyAccountClient
) {
#Lazy
#Inject
lateinit var subscriberRepository: SubscriberRepository
fun getDomainUser(ssoId: Long): EitherIO<UserError, User?> {
val io = IO.fx {
val userResource = getUserResourcesBySsoId(ssoId, myAccountClient).bind()
userResource.fold(
{ error -> Either.Left(error) },
{ success ->
Either.right(composeDomainUserWithSubscribers(success, getSubscribersForUserResource(success, subscriberRepository).bind()))
})
}
return EitherIO(io)
}
fun composeDomainUserWithSubscribers(userResource: UserResource, subscribers: Option<Subscribers>): User? {
return subscribers.map { userResource.toDomainUser(it) }.orNull()
}
}
private fun getSubscribersForUserResource(userResource: UserResource, subscriberRepository: SubscriberRepository): IO<Option<Subscribers>> {
return IO {
val msisdnList = userResource.getMsisdnList()
Option.invoke(subscriberRepository.findAllByMsisdnInAndDeletedIsFalse(msisdnList).associateBy(Subscriber::msisdn))
}
}
private fun getUserResourcesBySsoId(ssoId: Long, myAccountClient: MyAccountClient): IO<Either<UserError, UserResource>> {
return IO {
val response = myAccountClient.getUserBySsoId(ssoId)
if (response.isSuccessful) {
val userResource = JacksonUtils.fromJsonToObject(response.body()?.string()!!, UserResource::class.java)
Either.Right(userResource)
} else {
when (response.code()) {
401 -> Either.Left(UserError.AuthenticationError)
404 -> Either.Left(UserError.UserNotFound)
else -> Either.Left(UserError.InternalServerError)
}
}
}.handleError { Either.Left(UserError.InternalServerError) }
}
which, as you can see is accumulating some results into an IO monad. I should run this program using unsafeRunSync() from arrow, but on javadoc it's stated the following: **NOTE** this function is intended for testing, it should never appear in your mainline production code!.
I should mention that I know about unsafeRunAsync, but in my case I want to be synchronous.
Thanks!
Instead of running unsafeRunSync, you should favor unsafeRunAsync.
If you have myFun(): IO<A> and want to run this, then you call myFun().unsafeRunAsync(cb) where cb: (Either<Throwable, A>) -> Unit.
For instance, if your function returns IO<List<Int>> then you can call
myFun().unsafeRunAsync { /* it (Either<Throwable, List<Int>>) -> */
it.fold(
{ Log.e("Foo", "Error! $it") },
{ println(it) })
}
This will run the program contained in the IO asynchronously and pass the result safely to the callback, which will log an error if the IO threw, and otherwise it will print the list of integers.
You should avoid unsafeRunSync for a number of reasons, discussed here. It's blocking, it can cause crashes, it can cause deadlocks, and it can halt your application.
If you really want to run your IO as a blocking computation, then you can precede this with attempt() to have your IO<A> become an IO<Either<Throwable, A>> similar to the unsafeRunAsync callback parameter. At least then you won't crash.
But unsafeRunAsync is preferred. Also, make sure your callback passed to unsafeRunAsync won't throw any errors, at it's assumed it won't. Docs.

Kotlin coroutines and Java Completable future integration

Usually I'm using standard kotlin-jdk8 library to jump from Java *future API world into the Kotlin's suspend heaven.
And it worked great for me, until I encountered Neo4J cursor API, where I can't do .await() on the completion stage, because it immediately starts fetching millions of records into memory.
Kotlin way does not work for me, like this:
suspend fun query() {
driver.session().use { session ->
val cursor: StatementResultCursor = session.readTransactionAsync {
it.runAsync("query ...", params)
}.await() // HERE WE DIE WITH OOM
var record = cursor.nextAsync().await()
while (record != null) {
val node = record.get("node")
mySuspendProcessingFunction(node)
record = cursor.nextAsync().await()
}
}
}
At the same time, Java API works good, we fetch records one by one:
suspend fun query() {
session.readTransactionAsync { transaction ->
transaction.runAsync("query ...", params).thenCompose { cursor ->
cursor.forEachAsync { record ->
runBlocking { // BUT I NEED TO DO RUN BLOCKING HERE :(
val node = record.get("node")
mySuspendProcessingFunction(node)
}
}
}
}.thenCompose {
session.closeAsync()
}.await()
}
The second option works for me, but it is pretty ugly - definitely not Kotlin way, and what is more important, I need to use runBlocking (but these whole block is executed within suspend function)
What am I doing wrong? Is there a better way?
UPD
Tried to do this exercise using new Flow() feature, unfortunately results are the same:
suspend fun query() {
session.readTransactionAsync { transaction ->
transaction.runAsync(query, params).thenApply { cursor ->
cursor.asFlow().onEach { record ->
val node = record.get("node")
mySuspendProcessingFunction(node)
}
}
}.thenCompose {
session.closeAsync()
}.await()
}
fun StatementResultCursor.asFlow() = flow {
do {
val record = nextAsync().await()
if (record != null) emit(record)
} while (record != null)
}