How to build dynamic (shared) libraries of crashpad? - crash

Crashpad is an error reporting system for c++ apps.
https://chromium.googlesource.com/crashpad/crashpad/+/HEAD/doc/developing.md
build instructions are
$ cd ~/crashpad/crashpad
$ gn gen out/Default
$ ninja -C out/Default
I can build predefined static libs but I have not found a way how to use gn or ninja to generate the shared libraries.

After running gn gen out\Default, you can edit the out\Default\toolchain.ninja file to add extra compiler flags to the command for the cc and cxx rules.
rule cc
command = ninja -t msvc -e environment.amd64 -- cl.exe ... ${cflags} ${cflags_c} /c ...
add the /MD compiler flag after the others, here ^

#bobbyg603's answer is almost what I needed.
But as usual things are not written by hand but embedded in a script, so opening up an editor to change things is oftentimes not really useful at all. Programmatically, you can also use:
gn gen out\Default --args="extra_cflags=\"/MD\""
This will also change the arguments for cxx by the way.

after you generate ninja files, for each ninja file find the switch /MTd (debug) or /MT (release version) and change it to /MDd or /MD so the dynamic libs will be created
then you can build crashpad with ninja, the output is still lib files so they will be included in the exe file when you link them to your project (you do not have to add them to your project as using dlls).

We took another look at this today. If you run gn args --list out\Default you'll notice the following:
extra_cflags
Current value (from the default) = ""
From //third_party/mini_chromium/mini_chromium/build/BUILD.gn:50
Extra flags passed to the C compiler.
Space-separated string of flags.
"cflags" are passed to all invocations of the C, C++, Objective-C, and
Objective-C++ compilers.
To add the /MDd flag to your build config run gn args out\Default and add extra_cflags="/MDd" to the build config.

Related

generating debug info with emscripten / ninja / cmake on complex project

I am trying to debug a port of some c and c++ code to WASM. I worked out how to source level debug in the browser with a simple 10 line .c program but now I want to make that work with a non trivial code base. (mixed c and c++). The wasm code works in a simple app but not in my more complex use case, hence the need to debug it
I use CMake to generate ninja build files
Here is where I am setting flags in my CMakeLists.txt
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} \
-s MODULARIZE=1 \
-s SINGLE_FILE=1 \
-s EXPORT_NAME=aubio \
-g --bind")
this was basically copied from the original codebase (the -g instead of -Oz is mine), I am not a CMake nor ninja nor emscripten wizard. When I build this I can see that the CXX flags are not passed to the emc++ compile passes, only to the 'linker' phase
I am not even sure where the -g (perhaps with source-map) needs to be for a multi-file project 'linked' into a single file. Should it be on the compile passes or the link pass , or maybe both. But certainly at the moment I do not get any symbols anywhere, no 'map' file(s) (embedded DWARF?, since the browser plugin claims to support it)
set(CMAKE_BUILD_TYPE Debug)
seems to embed DWARF to WASM file.
I don't know why set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -g") nor target_compile_options(foo PUBLIC -g) doesn't work in Release build.

How do I make makefile generatedby cmake output the last command when error occur? [duplicate]

I use CMake with GNU Make and would like to see all commands exactly (for example how the compiler is executed, all the flags etc.).
GNU make has --debug, but it does not seem to be that helpful are there any other options? Does CMake provide additional flags in the generated Makefile for debugging purpose?
When you run make, add VERBOSE=1 to see the full command output. For example:
cmake .
make VERBOSE=1
Or you can add -DCMAKE_VERBOSE_MAKEFILE:BOOL=ON to the cmake command for permanent verbose command output from the generated Makefiles.
cmake -DCMAKE_VERBOSE_MAKEFILE:BOOL=ON .
make
To reduce some possibly less-interesting output you might like to use the following options. The option CMAKE_RULE_MESSAGES=OFF removes lines like [ 33%] Building C object..., while --no-print-directory tells make to not print out the current directory filtering out lines like make[1]: Entering directory and make[1]: Leaving directory.
cmake -DCMAKE_RULE_MESSAGES:BOOL=OFF -DCMAKE_VERBOSE_MAKEFILE:BOOL=ON .
make --no-print-directory
It is convenient to set the option in the CMakeLists.txt file as:
set(CMAKE_VERBOSE_MAKEFILE ON)
Or simply export VERBOSE environment variable on the shell like this:
export VERBOSE=1
cmake --build . --verbose
On Linux and with Makefile generation, this is likely just calling make VERBOSE=1 under the hood, but cmake --build can be more portable for your build system, e.g. working across OSes or if you decide to do e.g. Ninja builds later on:
mkdir build
cd build
cmake ..
cmake --build . --verbose
Its documentation also suggests that it is equivalent to VERBOSE=1:
--verbose, -v
Enable verbose output - if supported - including the build commands to be executed.
This option can be omitted if VERBOSE environment variable or CMAKE_VERBOSE_MAKEFILE cached variable is set.
Tested on Cmake 3.22.1, Ubuntu 22.04.
If you use the CMake GUI then swap to the advanced view and then the option is called CMAKE_VERBOSE_MAKEFILE.
I was trying something similar to ensure the -ggdb flag was present.
Call make in a clean directory and grep the flag you are looking for. Looking for debug rather than ggdb I would just write.
make VERBOSE=1 | grep debug
The -ggdb flag was obscure enough that only the compile commands popped up.
CMake 3.14+
CMake now has --verbose to specify verbose build output. This works regardless of your generator.
cd project
cmake -B build/
cmake --build build --verbose
It's worth noting however Xcode may not work with --verbose
Some generators such as Xcode don't support this option currently.
Another option it to use the VERBOSE environment variable.
New in version 3.14.
Activates verbose output from CMake and your build tools of choice when you start to actually build your project.
Note that any given value is ignored. It's just checked for existence.
cmake -DCMAKE_EXPORT_COMPILE_COMMANDS=TRUE will generate a file with all compilation commands.
This file is required by some LSP to know how to compile a source file out of the box, but it could also help for debugging compilation problems.
The output file is named ${CMAKE_BINARY_DIR}/compile_commands.json.

cmake building in source directory, not PWD

The question
Debug vs Release in CMake
indicates that
cd ~/codebase
mkdir Release
cd Release
cmake -DCMAKE_BUILD_TYPE=Release ..
make
Will create the Makefile in release, and build the binary there. The intermediate .o files will be in a subdirectory of this.
However, when I do this with my project, CMake ignores the PWD that it is started from. The final target is always the directory ~/codebase/ which contains CMakeList.txt.
In the cmake-gui tool, I specified the source and build directories to be the same directory, the FQN to codebase
I'm new to CMake, and don't know how to get this to work as I expect. What should I modify to get this work as expected?
If you are using a single configuration generator (Ninja/Unix-Makefiles)
Then you need a build folder for each configuration.
Like this:
# Configure the build
cmake -S . -B build/Debug -D CMAKE_BUILD_TYPE=Release
# Actually build the binaries
cmake --build build/Debug
For multi-configuration generators it's slightly different (Ninja Multi-Config, Visual Studio)
# Configure the build
cmake -S . -B build
# Actually build the binaries
cmake --build build --config Debug
If you are wondering why this is necessary it's because cmake isn't a build system. It's a meta-build system (IE a build system that creates build systems). This is basically the result of handling build systems that support multiple-configurations in 1 build. If you'd like a deeper understanding I'd suggest reading a bit about cmake in Craig Scott's book "Professional CMake: A Practical Guide
Note:
My examples use newer cmake cli practices.
EDIT:
That question you linked to has dangerously out of date answers...

How do I use CMake ExternalProject_Add or alternatives in a cross-platform way?

I would like to build a third-party project that already has CMake as part of my project's CMake strips. ExternalProject_Add is for this purpose, but I have found it can only be made to work with a specific generator, and I wanted it to work on many platforms easily.
For example, here is my external project with an added script for zlib, which has its own CMakeLists.txt:
set(USE_PROJECT_CMAKE_MODULE_PATH "-DCMAKE_MODULE_PATH=${MAKE_MODULE_PATH}")
ExternalProject_Add(ZLIB
SOURCE_DIR ${CMAKE_SOURCE_DIR}/external/zlib
DOWNLOAD_COMMAND ""
UPDATE_COMMAND ""
CMAKE_ARGS
-DCMAKE_INSTALL_PREFIX=<INSTALL_DIR>
-DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}
-DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}
-DCMAKE_BUILD_TYPE=${CMAKE_BUILD_TYPE}
${USE_PROJECT_CMAKE_MODULE_PATH}
INSTALL_COMMAND "")
ExternalProject_Add_Step(ZLIB installInternally
COMMAND cd <BINARY_DIR> && make install
DEPENDEES install
ALWAYS 1)
ExternalProject_Get_Property(ZLIB install_dir)
if(UNIX)
set(ZLIB_NAME libz)
else(UNIX)
set(ZLIB_NAME zlib)
endif(UNIX)
add_library(zlib UNKNOWN IMPORTED)
set_property(TARGET zlib PROPERTY IMPORTED_LOCATION ${install_dir}/lib/${ZLIB_NAME}.a)
set(ZLIB_LIBRARIES zlib)
set(ZLIB_LIBRARIES_OPTIONAL ${ZLIB_LIBRARIES})
set(ZLIB_DIR ${install_dir} CACHE INTERNAL "zlib ROOT dir")
set(ZLIB_INCLUDE_DIRS ${install_dir}/include CACHE INTERNAL "zlib include dirs")
set(ZLIB_DEFINES "-msse2 -mfpmath=sse" CACHE INTERNAL "zlib defines")
The problem with this is that it works with make, but not with Xcode or Visual Studio. Perhaps there is some way to take the CMake build commands passed to my project and forward them to ExternalProject_Add.
How can I write ExternalProject_Add calls in a cross-platform way with minimal code complexity, or is there a better alternative?
Problems
-DCMAKE_BUILD_TYPE=${CMAKE_BUILD_TYPE}
This is enough for single-configuration projects. But for Xcode and Visual Studio, you need to set CMAKE_CONFIGURATION_TYPES plus call build . --config at the build stage. See my answer.
COMMAND cd <BINARY_DIR> && make install
This will work only for Makefile generators of course. To be cross-platform you can use:
--build . --target install --config inside INSTALL_COMMAND of ExternalProject_Add.
Take a look at this template file, and in particular the following lines:
ExternalProject_Add(
"${current_project}"
URL
#HUNTER_PACKAGE_URL#
URL_HASH
SHA1=#HUNTER_PACKAGE_SHA1#
DOWNLOAD_DIR
"#HUNTER_PACKAGE_DOWNLOAD_DIR#"
SOURCE_DIR
"#HUNTER_PACKAGE_SOURCE_DIR#"
INSTALL_DIR
"#HUNTER_PACKAGE_INSTALL_PREFIX#"
# Not used, just avoid creating Install/<name> empty directory
BUILD_COMMAND ""
# This command is empty because all necessary targets will
# be built on install stage
CMAKE_ARGS
"-G#CMAKE_GENERATOR#"
"-C#HUNTER_CACHE_FILE#"
"-C#HUNTER_ARGS_FILE#"
"-D${postfix_name}=${${postfix_name}}"
"-DCMAKE_BUILD_TYPE=${configuration}"
"-DCMAKE_CONFIGURATION_TYPES=${configuration}"
"-DCMAKE_INSTALL_PREFIX=#HUNTER_PACKAGE_INSTALL_PREFIX#"
"-DCMAKE_TOOLCHAIN_FILE=${CMAKE_TOOLCHAIN_FILE}"
INSTALL_COMMAND
"#CMAKE_COMMAND#"
--build .
--target install
--config ${configuration}
--
${jobs_option}
)
Alternative
or is there a better alternative?
Have you seen Hunter?
You can add zlib just like this:
hunter_add_package(ZLIB)
find_package(ZLIB CONFIG REQUIRED)
target_link_libraries(... ZLIB::zlib)
This code works everywhere. Third party dependencies will be downloaded automatically in the configuration step. Example of building with different generator/toolchains (build.py is just a CMake wrapper that sets CMAKE_TOOLCHAIN_FILE and -G/-B):
build.py --toolchain mingw --config Release # MinGW Makefiles
build.py --toolchain vs-12-2013 --config Debug # Visual Studio 12 2013
build.py --toolchain xcode --config Release # Xcode
build.py --toolchain libcxx --config Release # Makefile with -stdlib=libc++ toolchain
build.py --toolchain ios-8-2 --config Release # Xcode with iOS SDK 8.2 toolchain
You got full control what options, build types or number of jobs you want to have while building third-party packages. For instance, this is how you can build four types, Debug, Release, MinSizeRel, and RelWithDebInfo for zlib and link MinSizeRel to the current project:
> build.py --toolchain xcode --verbose --config MinSizeRel --fwd "HUNTER_CONFIGURATION_TYPES=Release;Debug;MinSizeRel;RelWithDebInfo"
/.../clang /.../lib/libz-MinSizeRel.a ... -o /.../_builds/xcode/MinSizeRel/foo
> ls -la /.../.hunter/_Base/d1232c0/326318e/37e4682/Install/lib/libz*
99056 /.../.hunter/_Base/d1232c0/326318e/37e4682/Install/lib/libz-MinSizeRel.a
307872 /.../.hunter/_Base/d1232c0/326318e/37e4682/Install/lib/libz-RelWithDebInfo.a
109536 /.../.hunter/_Base/d1232c0/326318e/37e4682/Install/lib/libz.a
258904 /.../.hunter/_Base/d1232c0/326318e/37e4682/Install/lib/libzd.a
CMake ExternalProject_Add calls work cross-platform by default and will only fail to do so if one uses particular commands that are only available on a subset of operating systems.
Typically, CMAKE_ARGS is used to pass information to each superbuild unit within an external project build. The CMakeLists.txt files that control each miniature part of the overall build use CMake's declarative syntax (e.g., "add_library(library_name SHARED filename1.hpp filename1.cpp). CMake will convert such syntax to the commands that are specific to the particular build system you wish to use (e.g., make and Ninja).
The sample above re: zlib fails to be cross-platform in part because the ExternalProject_Add_Step contains "COMMAND cd && make install", which necessarily only works in situations where invoking "cd" is actually the correct way to change directories, and where invoking "make" is actually the correct way to build software.
CMake's -E option provides a way to invoke basic operations like changing/copying/making/removing directories without making such assumptions.
(By the way, if you're using IDEs such as Visual Studio or Xcode, you'll likely want to invoke one or more IDE generators when using CMake. For instance, setting
-G "Eclipse CDT4 - Unix Makefiles" -DCMAKE_ECLIPSE_GENERATE_SOURCE_PROJECT=TRUE
will cause Eclipse projects to be generated in each build area, and also in the source code area that is shared for all builds. Of course, if you are using Xcode or Visual Studio, you'll have to substitute the appropriate flag for those IDEs. Alternatively, you could consider using Eclipse with Ninja on all platforms, though at the time of writing, I am not completely certain that Ninja is ready for prime-time on non-Linux, non-Windows operating systems.)

How to have cmake unpack my compiler

In order to ensure that my Linux builds are identical regardless of the distribution the build host uses, I have packaged up my compiler and the sysroot files into a relocatable tar file and checked that into source control.
So the first step in any build (or at least, a step that must be invoked before any compile step) must be to extract this tar file.
If I was using a makefile, this would be simple to do. However, the project is using cmake and I can't figure out any way to do it with cmake. It might even be that I need this extract step invoked before cmake starts to detect the compiler: I can hard-code the compiler name but if cmake fails if it can't find the compiler then I need the unpack to happen before that test.
Is this possible with cmake?
You can use execute_process to invoke cmake's cross-platform command mode (cmake -E tar). The command would be something like:
execute_process(COMMAND ${CMAKE_COMMAND} -E tar xvf MyCompiler.bz2)
The command which causes CMake to check for a valid compiler is project, so as long as you have your execute_process call before the project call, the unpacking will be done before the compiler check.