I need to run k-means algorithm from Tensorflow in Go, i.e. cluster a graph intro subgraphs according to nodes similarity matrix.
I came across this article which shows an example on how to run a Keras trained model in Go. In this example the algo is of a supervised learning type. However in clustering algos, as I understand, there will be no model to save and export it to Go implementation.
The reason I am interested in Tensorflow, is because I think its code is optimized and will run much faster than k-mean implementation in Go, even with the scenario I described above.
I need an opinion of whether:
It is indeed impossible to use a Tensorflow k-mean algorithm in Go, and it is much better just to use k-means implemented in Go for this case.
It is possible to do this, and some sort of example or ideas on how to do this are very much appreciated.
Related
I have built some gaussian process models in GPflow and learned them successfully, but I cannot find APIs that can help me to make inferences straightforwardly in GPflow, such as seperating the contributions of different kernels in a GPR model.
I know that I can do it manually, like calculating the covariance matrices, inverse and multiply, but such work can be quite annoying as the model gets more complex, like a multi-output SVGP model. Any suggestions?
Thanks in advance!
If you want to e.g. decompose an additive Kernel, I think the easiest way for vanilla GPR would be to just switch out the Kernel to the part you're interested in, while still keeping the learned hyperparameters.
I'm not totally sure about it, but I think it could also work out for SVGP, since the approximation itself is just a standard GP using the same kernel but conditioned on the Inducing Points.
However, I'm not sure if the decomposition of the Variational approximation can be assumed to be close to the decomposition of the true posterior.
I'm trying to train a model for a sentence classification task. The input is a sentence (a vector of integers) and the output is a label (0 or 1). I've seen some articles here and there about using Bert and GPT2 for text classification tasks. However, I'm not sure which one should I pick to start with. Which of these recent models in NLP such as original Transformer model, Bert, GPT2, XLNet would you use to start with? And why? I'd rather to implement in Tensorflow, but I'm flexible to go for PyTorch too.
Thanks!
It highly depends on your dataset and is part of the data scientist's job to find which model is more suitable for a particular task in terms of selected performance metric, training cost, model complexity etc.
When you work on the problem you will probably test all of the above models and compare them. Which one of them to choose first? Andrew Ng in "Machine Learning Yearning" suggest starting with simple model so you can quickly iterate and test your idea, data preprocessing pipeline etc.
Don’t start off trying to design and build the perfect system.
Instead, build and train a basic system quickly—perhaps in just a few
days
According to this suggestion, you can start with a simpler model such as ULMFiT as a baseline, verify your ideas and then move on to more complex models and see how they can improve your results.
Note that modern NLP models contain a large number of parameters and it is difficult to train them from scratch without a large dataset. That's why you may want to use transfer learning: you can download pre-trained model and use it as a basis and fine-tune it to your task-specific dataset to achieve better performance and reduce training time.
I agree with Max's answer, but if the constraint is to use a state of the art large pretrained model, there is a really easy way to do this. The library by HuggingFace called pytorch-transformers. Whether you chose BERT, XLNet, or whatever, they're easy to swap out. Here is a detailed tutorial on using that library for text classification.
EDIT: I just came across this repo, pytorch-transformers-classification (Apache 2.0 license), which is a tool for doing exactly what you want.
Well like others mentioned, it depends on the dataset and multiple models should be tried and best one must be chosen.
However, sharing my experience, XLNet beats all other models so far by a good margin. Hence if learning is not the objective, i would simple start with XLNET and then try a few more down the line and conclude. It just saves time in exploring.
Below repo is excellent to do all this quickly. Kudos to them.
https://github.com/microsoft/nlp-recipes
It uses hugging face transformers and makes them dead simple. 😃
I have used XLNet, BERT, and GPT2 for summarization tasks (English only). Based on my experience, GPT2 works the best among all 3 on short paragraph-size notes, while BERT performs better for longer texts (up to 2-3 pages). You can use XLNet as a benchmark.
Is there any equivalent/alternate library to fastai in tensorfow for easier training and debugging deep learning models including analysis on results of trained model in Tensorflow.
Fastai is built on top of pytorch looking for similar one in tensorflow.
The obvious choice would be to use tf.keras.
It is bundled with tensorflow and is becoming its official "high-level" API -- to the point where in TF 2 you would probably need to go out of your way not using it at all.
It is clearly the source of inspiration for fastai to easy the use of pytorch as Keras does for tensorflow, as mentionned by the authors time and again:
Unfortunately, Pytorch was a long way from being a good option for part one of the course, which is designed to be accessible to people with no machine learning background. It did not have anything like the clear simple API of Keras for training models. Every project required dozens of lines of code just to implement the basics of training a neural network. Unlike Keras, where the defaults are thoughtfully chosen to be as useful as possible, Pytorch required everything to be specified in detail. However, we also realised that Keras could be even better. We noticed that we kept on making the same mistakes in Keras, such as failing to shuffle our data when we needed to, or vice versa. Also, many recent best practices were not being incorporated into Keras, particularly in the rapidly developing field of natural language processing. We wondered if we could build something that could be even better than Keras for rapidly training world-class deep learning models.
This is a newbie question for the tensorflow experts:
I reading lot of data from power transformer connected to an array of solar panels using arduinos, my question is can I use tensorflow to predict the power generation in future.
I am completely new to tensorflow, if can point me to something similar I can start with that or any github repo which is doing similar predictive modeling.
Edit: Kyle pointed me to the MNIST data, which I believe is a Image Dataset. Again, not sure if tensorflow is the right computation library for this problem or does it only work on Image datasets?
thanks, Rajesh
Surely you can use tensorflow to solve your problem.
TensorFlow™ is an open source software library for numerical
computation using data flow graphs.
So it works not only on Image dataset but also others. Don't worry about this.
And about prediction, first you need to train a model(such as linear regression) on you dataset, then predict. The tutorial code can be found in tensorflow homepage .
Get your hand dirty, you will find it works on your dataset.
Good luck.
You can absolutely use TensorFlow to predict time series. There are plenty of examples out there, like this one. And this is a really interesting one on using RNN to predict basketball trajectories.
In general, TF is a very flexible platform for solving problems with machine learning. You can create any kind of network you can think of in it, and train that network to act as a model for your process. Depending on what kind of costs you define and how you train it, you can build a network to classify data into categories, predict a time series forward a number of steps, and other cool stuff.
There is, sadly, no short answer for how to do this, but that's just because the possibilities are endless! Have fun!
I want to study on the research of deep learning, but I don't know which framwork should I choice between TensorFlow and PaddlePaddle. who can make a contrast between the two frameworks? which one is better? especially in the running efficiency of CPU
It really depends what you are shooting for...
If you plan on training, CPU is not going to work well for you. Use colab or kaggle.
Assuming you do get a GPU, it depends if you want to focus on classification or object detection.
If you focus on classification, Keras is probably the easiest to work with or pytorch if you want some advanced stuff and to be able to change things.
If you plan on object detection, things are getting complicated... Inference is reasonably easy but training is complicated. There are actually 4 platforms you should consider:
Tensorflow - powerful but very difficult to work with. If you do not use Keras (and for OD you usually can't), you need to preprocess the dataset into tfrecords and it is a pain. The OD Api has very cryptic messages and it is very sensitive to the combination of tf version and api version. On the other hand, cool models like efficientdet are more or less easy to use.
MMdetection - very powerful framework, has lots of advanced models and once you understand how to work with it, you can easily work with and of the models it supports. Downside is that some models are slow to arrive (efficientdet, for example)
paddlepaddle - if you know Chinese, this should work ok, maybe. The documentation is a bit behind and usually requires lots of improvisation. Basically it is similar to mmdetection just with a few unique models and a few missing models.
detectron2 - I didn't work with this one, but it seems to support only a few models.
You probably need first to define for yourself what do you want to do and then choose.
Good luck!
It is not that trivial. Some models run faster with one kind of framework others with another. Furthermore, it depends on the hardware as well. See this blog. If inference is your only concern, then you can develop your model in any of the popular frameworks like TensorFlow, PyTorch, etc. In the end convert your model to ONNX format and benchmark its performance with DNN-Bench to choose the best inference engine for your application.