How to open Star Micronics mPOP cash drawer using code - objective-c

I just received my mPOP device with printer ands cash drawer and I wanted to try and write a simple app to just open the cash drawer and write a log when it was opened and again when closed. I cannot find any easy documentation how to do this.
Can someone please help with the minimum code snippet to open the cash drawer and how to detect it was opened or closed?

The drive drawer command is ESC * r D [0|1|2|3] null, you can find it in the Command Specifications manual. The programming documentation can be found in the document StarIO_POSPrinter_iOS_SDK.pdf. Both documents can be found in the Star Micronics Developers Section. The following snippet is taken from the second manual.
Byte #5 in the command[] array on line 1 of the snippet defines which drive should be activated, possible is 0x00 (none), 0x01 (drive 1), 0x02 (drive 2) and 0x03 (both drives).
This is as far as I get without testing, but maybe you find your way from there.
unsigned char command[] = {0x1B, 0x2A, 0x72, 0x44, 0x01, 0x00};
uint bytesWritten = 0;
StarPrinterStatus_2 starPrinterStatus;
SMPort *port = nil;
#try
{
port = [SMPort getPort:#"BT:" :#"" :10000];
//Start checking the completion of printing
[port beginCheckedBlock:&starPrinterStatus :2];
if (starPrinterStatus.offline == SM_TRUE)
{
//There was an error writing to the port
}
while (bytesWritten < sizeof (command)) {
bytesWritten += [port writePort: command : bytesWritten : sizeof (command) - bytesWritten];
}
//End checking the completion of printing
[port endCheckedBlock:&starPrinterStatus :2];
if (starPrinterStatus.offline == SM_TRUE)
{
//There was an error writing to the port
}
}
#catch (PortException)
{
//There was an error writing to the port
}
#finally
{
[SMPort releasePort:port];
}

Related

STM32F769NI USB CDC host problem sending simple data to the device

I am making HID for some data acquisition system. There are a lot of sensors who store test data and when I need I get to them and connect via USB and take it. USB host sent 3 bytes and USB device, if bytes are correct, sends its stored data. Sounds simple.
Previously it was implemented on PC, but now I try to implement it on STM32F769 Discovery and have some serious problems.
I am using ARM Keil 5.27, code generated with STM32CubeMX 5.3.0. I tried just to make a plain simple program, later to integrate with the entire touchscreen interface. I tried to implement this code in main:
if (HAL_GPIO_ReadPin(BUTTON_GPIO_Port, BUTTON_Pin))
while (HAL_GPIO_ReadPin(BUTTON_GPIO_Port, BUTTON_Pin))
{
Transmission_function();
}
And the function itself:
#define DLE 0x10
#define STX 0x2
uint8_t tx_buf[]={DLE, STX, 120}, RX_FLAG;
uint32_t size_tx=sizeof(tx_buf);
void Transmission_function (void)
{
if (Appli_state == APPLICATION_READY)
{
i=0;
USBH_CDC_Transmit(&hUsbHostHS, tx_buf, size_tx);
HAL_Delay(50);
RX_FLAG=0;
}
}
It should send the message after I press the blue button on the Discovery board. All that I get is Hard Fault. While trying to debug, I tried manually to check after which action I get this error and it was functioning in stm32f7xx_ll_usb.c:
HAL_StatusTypeDef USB_WritePacket(USB_OTG_GlobalTypeDef *USBx, uint8_t *src,
uint8_t ch_ep_num, uint16_t len, uint8_t dma)
{
uint32_t USBx_BASE = (uint32_t)USBx;
uint32_t *pSrc = (uint32_t *)src;
uint32_t count32b, i;
if (dma == 0U)
{
count32b = ((uint32_t)len + 3U) / 4U;
for (i = 0U; i < count32b; i++)
{
USBx_DFIFO((uint32_t)ch_ep_num) = *((__packed uint32_t *)pSrc);
pSrc++;
}
}
return HAL_OK;
}
But trying to scroll back in disassembly I notice, that just before Hard Fault program was in this function inside stm32f7xx_hal_hcd.c, in case GRXSTS_PKTSTS_IN:
static void HCD_RXQLVL_IRQHandler(HCD_HandleTypeDef *hhcd)
{
USB_OTG_GlobalTypeDef *USBx = hhcd->Instance;
uint32_t USBx_BASE = (uint32_t)USBx;
uint32_t pktsts;
uint32_t pktcnt;
uint32_t temp;
uint32_t tmpreg;
uint32_t ch_num;
temp = hhcd->Instance->GRXSTSP;
ch_num = temp & USB_OTG_GRXSTSP_EPNUM;
pktsts = (temp & USB_OTG_GRXSTSP_PKTSTS) >> 17;
pktcnt = (temp & USB_OTG_GRXSTSP_BCNT) >> 4;
switch (pktsts)
{
case GRXSTS_PKTSTS_IN:
/* Read the data into the host buffer. */
if ((pktcnt > 0U) && (hhcd->hc[ch_num].xfer_buff != (void *)0))
{
(void)USB_ReadPacket(hhcd->Instance, hhcd->hc[ch_num].xfer_buff, (uint16_t)pktcnt);
/*manage multiple Xfer */
hhcd->hc[ch_num].xfer_buff += pktcnt;
hhcd->hc[ch_num].xfer_count += pktcnt;
if ((USBx_HC(ch_num)->HCTSIZ & USB_OTG_HCTSIZ_PKTCNT) > 0U)
{
/* re-activate the channel when more packets are expected */
tmpreg = USBx_HC(ch_num)->HCCHAR;
tmpreg &= ~USB_OTG_HCCHAR_CHDIS;
tmpreg |= USB_OTG_HCCHAR_CHENA;
USBx_HC(ch_num)->HCCHAR = tmpreg;
hhcd->hc[ch_num].toggle_in ^= 1U;
}
}
break;
case GRXSTS_PKTSTS_DATA_TOGGLE_ERR:
break;
case GRXSTS_PKTSTS_IN_XFER_COMP:
case GRXSTS_PKTSTS_CH_HALTED:
default:
break;
}
}
Last few lines from Dissasembly shows this:
0x080018B4 E8BD81F0 POP {r4-r8,pc}
0x080018B8 0000 DCW 0x0000
0x080018BA 1FF8 DCW 0x1FF8
Why it fails? How could I fix it? I do not have much experience with USB protocol.
I will post my walkaround this, but I am not sure why it worked. Solution was to use EXTI0 interrupt instead of just detection if PA0 is high, as I showed I used here:
if (HAL_GPIO_ReadPin(BUTTON_GPIO_Port, BUTTON_Pin))
while (HAL_GPIO_ReadPin(BUTTON_GPIO_Port, BUTTON_Pin))
Transmission_function();
I changed it to this:
void EXTI0_IRQHandler(void)
{
/* USER CODE BEGIN EXTI0_IRQn 0 */
if(Appli_state == APPLICATION_READY){
USBH_CDC_Transmit(&hUsbHostHS, Buffer, 3);
}
/* USER CODE END EXTI0_IRQn 0 */
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_0);
/* USER CODE BEGIN EXTI0_IRQn 1 */
/* USER CODE END EXTI0_IRQn 1 */
}

How to put BG96 on power save mode between sending messages to Azure IoT Hub over HTTP

I'm using a Nucleo L496ZG, X-NUCLEO-IKS01A2 and the Quectel BG96 module to send sensor data (temperature, humidity etc..) to Azure IoT Central over HTTP.
I've been using the example implementation provided by Avnet here, which works fine but it's not power optimized and with a 6700mAh battery pack it only lasts around 30 hours sending telemetry ever ~10 seconds. Goal is for it to last around a week. I'm open to increasing the time between messages but I also want to save power in between sending.
I've gone over the Quectel BG96 manuals and I've tried two things:
1) powering off the device by driving the PWRKEY and turning it back on when I need to send a message
I've gotten this to work, kinda… until I get a hardfault exception which happens seemingly randomly anywhere from within ~5 minutes of running to 2 hours (messages successfully sending prior to the exception). Output of crash log parser is the same every time:
Crash location = strncmp [0x08038DF8] (based on PC value)
Caller location = _findenv_r [0x0804119D] (based on LR value)
Stack Pointer at the time of crash = [20008128]
Target and Fault Info:
Processor Arch: ARM-V7M or above
Processor Variant: C24
Forced exception, a fault with configurable priority has been escalated to HardFault
A precise data access error has occurred. Faulting address: 03060B30
The caller location traces back to my .map file and I don't know what to make of it.
My code:
// Copyright (c) Microsoft. All rights reserved.
// Licensed under the MIT license. See LICENSE file in the project root for full license information.
//#define USE_MQTT
#include <stdlib.h>
#include "mbed.h"
#include "iothubtransporthttp.h"
#include "iothub_client_core_common.h"
#include "iothub_client_ll.h"
#include "azure_c_shared_utility/platform.h"
#include "azure_c_shared_utility/agenttime.h"
#include "jsondecoder.h"
#include "bg96gps.hpp"
#include "azure_message_helper.h"
#define IOT_AGENT_OK CODEFIRST_OK
#include "azure_certs.h"
/* initialize the expansion board && sensors */
#include "XNucleoIKS01A2.h"
static HTS221Sensor *hum_temp;
static LSM6DSLSensor *acc_gyro;
static LPS22HBSensor *pressure;
static const char* connectionString = "xxx";
// to report F uncomment this #define CTOF(x) (((double)(x)*9/5)+32)
#define CTOF(x) (x)
Thread azure_client_thread(osPriorityNormal, 10*1024, NULL, "azure_client_thread");
static void azure_task(void);
EventFlags deleteOK;
size_t g_message_count_send_confirmations;
/* create the GPS elements for example program */
BG96Interface* bg96Interface;
//static int tilt_event;
// void mems_int1(void)
// {
// tilt_event++;
// }
void mems_init(void)
{
//acc_gyro->attach_int1_irq(&mems_int1); // Attach callback to LSM6DSL INT1
hum_temp->enable(); // Enable HTS221 enviromental sensor
pressure->enable(); // Enable barametric pressure sensor
acc_gyro->enable_x(); // Enable LSM6DSL accelerometer
//acc_gyro->enable_tilt_detection(); // Enable Tilt Detection
}
void powerUp(void) {
if (platform_init() != 0) {
printf("Error initializing the platform\r\n");
return;
}
bg96Interface = (BG96Interface*) easy_get_netif(true);
}
void BG96_Modem_PowerOFF(void)
{
DigitalOut BG96_RESET(D7);
DigitalOut BG96_PWRKEY(D10);
DigitalOut BG97_WAKE(D11);
BG96_RESET = 0;
BG96_PWRKEY = 0;
BG97_WAKE = 0;
wait_ms(300);
}
void powerDown(){
platform_deinit();
BG96_Modem_PowerOFF();
}
//
// The main routine simply prints a banner, initializes the system
// starts the worker threads and waits for a termination (join)
int main(void)
{
//printStartMessage();
XNucleoIKS01A2 *mems_expansion_board = XNucleoIKS01A2::instance(I2C_SDA, I2C_SCL, D4, D5);
hum_temp = mems_expansion_board->ht_sensor;
acc_gyro = mems_expansion_board->acc_gyro;
pressure = mems_expansion_board->pt_sensor;
azure_client_thread.start(azure_task);
azure_client_thread.join();
platform_deinit();
printf(" - - - - - - - ALL DONE - - - - - - - \n");
return 0;
}
static void send_confirm_callback(IOTHUB_CLIENT_CONFIRMATION_RESULT result, void* userContextCallback)
{
//userContextCallback;
// When a message is sent this callback will get envoked
g_message_count_send_confirmations++;
deleteOK.set(0x1);
}
void sendMessage(IOTHUB_CLIENT_LL_HANDLE iotHubClientHandle, char* buffer, size_t size)
{
IOTHUB_MESSAGE_HANDLE messageHandle = IoTHubMessage_CreateFromByteArray((const unsigned char*)buffer, size);
if (messageHandle == NULL) {
printf("unable to create a new IoTHubMessage\r\n");
return;
}
if (IoTHubClient_LL_SendEventAsync(iotHubClientHandle, messageHandle, send_confirm_callback, NULL) != IOTHUB_CLIENT_OK)
printf("FAILED to send! [RSSI=%d]\n", platform_RSSI());
else
printf("OK. [RSSI=%d]\n",platform_RSSI());
IoTHubMessage_Destroy(messageHandle);
}
void azure_task(void)
{
//bool tilt_detection_enabled=true;
float gtemp, ghumid, gpress;
int k;
int msg_sent=1;
while (true) {
powerUp();
mems_init();
/* Setup IoTHub client configuration */
IOTHUB_CLIENT_LL_HANDLE iotHubClientHandle = IoTHubClient_LL_CreateFromConnectionString(connectionString, HTTP_Protocol);
if (iotHubClientHandle == NULL) {
printf("Failed on IoTHubClient_Create\r\n");
return;
}
// add the certificate information
if (IoTHubClient_LL_SetOption(iotHubClientHandle, "TrustedCerts", certificates) != IOTHUB_CLIENT_OK)
printf("failure to set option \"TrustedCerts\"\r\n");
#if MBED_CONF_APP_TELUSKIT == 1
if (IoTHubClient_LL_SetOption(iotHubClientHandle, "product_info", "TELUSIOTKIT") != IOTHUB_CLIENT_OK)
printf("failure to set option \"product_info\"\r\n");
#endif
// polls will happen effectively at ~10 seconds. The default value of minimumPollingTime is 25 minutes.
// For more information, see:
// https://azure.microsoft.com/documentation/articles/iot-hub-devguide/#messaging
unsigned int minimumPollingTime = 9;
if (IoTHubClient_LL_SetOption(iotHubClientHandle, "MinimumPollingTime", &minimumPollingTime) != IOTHUB_CLIENT_OK)
printf("failure to set option \"MinimumPollingTime\"\r\n");
IoTDevice* iotDev = (IoTDevice*)malloc(sizeof(IoTDevice));
if (iotDev == NULL) {
return;
}
setUpIotStruct(iotDev);
char* msg;
size_t msgSize;
hum_temp->get_temperature(&gtemp); // get Temp
hum_temp->get_humidity(&ghumid); // get Humidity
pressure->get_pressure(&gpress); // get pressure
iotDev->Temperature = CTOF(gtemp);
iotDev->Humidity = (int)ghumid;
iotDev->Pressure = (int)gpress;
printf("(%04d)",msg_sent++);
msg = makeMessage(iotDev);
msgSize = strlen(msg);
sendMessage(iotHubClientHandle, msg, msgSize);
free(msg);
iotDev->Tilt &= 0x2;
/* schedule IoTHubClient to send events/receive commands */
IOTHUB_CLIENT_STATUS status;
while ((IoTHubClient_LL_GetSendStatus(iotHubClientHandle, &status) == IOTHUB_CLIENT_OK) && (status == IOTHUB_CLIENT_SEND_STATUS_BUSY))
{
IoTHubClient_LL_DoWork(iotHubClientHandle);
ThisThread::sleep_for(100);
}
deleteOK.wait_all(0x1);
free(iotDev);
IoTHubClient_LL_Destroy(iotHubClientHandle);
powerDown();
ThisThread::sleep_for(300000);
}
return;
}
I know PSM is probably the way to go since powering on/off the device draws a lot of power but it would be useful if someone had an idea of what is happening here.
2) putting the device to PSM between sending messages
The BG96 library in the example code I'm using doesn't have a method to turn on PSM so I tried to implement my own. When I tried to run it, it basically runs into an exception right away so I know it's wrong (I'm very new to embedded development and have no prior experience with AT commands).
/** ----------------------------------------------------------
* this is a method provided by current library
* #brief Tx a string to the BG96 and wait for an OK response
* #param none
* #retval true if OK received, false otherwise
*/
bool BG96::tx2bg96(char* cmd) {
bool ok=false;
_bg96_mutex.lock();
ok=_parser.send(cmd) && _parser.recv("OK");
_bg96_mutex.unlock();
return ok;
}
/**
* method I created in an attempt to use PSM
*/
bool BG96::psm(void) {
return tx2bg96((char*)"AT+CPSMS=1,,,”00000100”,”00000001”");
}
Can someone tell me what I'm doing wrong and provide any guidance on how I can achieve my goal of having my device run on battery for longer?
Thank you!!
I got Power Saving Mode working by using Mbed's ATCmdParser and the AT+QPSMS commands as per Quectel's docs. The modem doesn't always go into power saving mode right away so that should be noted. I also found that I have to restart the modem afterwards or else I get weird behaviour. My code looks something like this:
bool BG96::psm(char* T3412, char* T3324) {
_bg96_mutex.lock();
if(_parser.send("AT+QPSMS=1,,,\"%s\",\"%s\"", T3412, T3324) && _parser.recv("OK")) {
_bg96_mutex.unlock();
}else {
_bg96_mutex.unlock();
return false;
}
return BG96Ready(); }//restarts modem
To send a message to Azure, the modem will need to be manually woken up by driving the PWRKEY to start bi-directional communication, and a new client handle needs to be created and torn down every time since Azure connection uses keepAlive and the modem will be unreachable when it's in PSM.

Linux-Xenomai Serial Communication using xeno_16550A module

I'm starter of RTOS and I'm using Xenomai v2.6.3.
I'm trying to get some data using Serial communication.
I did my best on the task following the xenomai's guide and open sources, but it doesn't work well.
the link of the guide --> (https://xenomai.org//serial-16550a-driver/)
I just followed the sequence to use the module xeno_16550A. (with port io = 0x2f8 and irq=3)
I followed open source http://www.acadis.org/pages/captain.at/serial-port-example
It works well in write task, but read task doesn't work well.
It gave me the error sentence with error while RTSER_RTIOC_WAIT_EVENT, code -110 (it means connection timed out)
Moreover I checked the irq number3 by typing command 'cat /proc/xenomai/irq', but the interrupt number doesn't increase.
In my case, I don't need to write data, so I erase the write task code.
The read task proc is follow
void read_task_proc(void *arg) {
int ret;
ssize_t red = 0;
struct rtser_event rx_event;
while (1) {
/* waiting for event */
ret = rt_dev_ioctl(my_fd, RTSER_RTIOC_WAIT_EVENT, &rx_event );
if (ret) {
printf(RTASK_PREFIX "error while RTSER_RTIOC_WAIT_EVENT, code %d\n",ret);
if (ret == -ETIMEDOUT)
continue;
break;
}
unsigned char buf[1];
red = rt_dev_read(my_fd, &buf, 1);
if (red < 0 ) {
printf(RTASK_PREFIX "error while rt_dev_read, code %d\n",red);
} else {
printf(RTASK_PREFIX "only %d byte received , char : %c\n",red,buf[0]);
}
}
exit_read_task:
if (my_state & STATE_FILE_OPENED) {
if (!close_file( my_fd, READ_FILE " (rtser)")) {
my_state &= ~STATE_FILE_OPENED;
}
}
printf(RTASK_PREFIX "exit\n");
}
I could guess the causes of the problem.
buffer size or buffer is already full when new data is received.
rx_interrupt doesn't work....
I want to check whether the two things are wrong or not, but How can I check?
Furthermore, does anybody know the cause of the problem? Please give me comments.

No r/w bit made available to firmware by I2C peripheral of STM32F40x chips

I was wondering if anyone has found a way to determine the intention of a master communicating with an stm32f40x chip? From the perspective of the firmware on the stm32f40x chip, the ADDRess sent by the master is not available, and the r/w bit (bit 0 of the address) contained therein is also not available. So how can I prevent collisions? Has anyone else dealt with this? If so what techniques did you use? My tentative solution is below for reference. I delayed any writes to the DR data register until the TXE interrupt occurs. I thought at first this would be too late, and a byte of garbage would be clocked out, but it seems to be working.
static inline void LLEVInterrupt(uint16_t irqSrc)
{
uint8_t i;
volatile uint16_t status;
I2CCBStruct* buffers;
I2C_TypeDef* addrBase;
// see which IRQ occurred, process accordingly...
switch (irqSrc)
{
case I2C_BUS_CHAN_1:
addrBase = this.addrBase1;
buffers = &this.buffsBus1;
break;
case I2C_BUS_CHAN_2:
addrBase = this.addrBase2;
buffers = &this.buffsBus2;
break;
case I2C_BUS_CHAN_3:
addrBase = this.addrBase3;
buffers = &this.buffsBus3;
break;
default:
while(1);
}
// ...START condition & address match detected
if (I2C_GetITStatus(addrBase, I2C_IT_ADDR) == SET)
{
// I2C_IT_ADDR: Cleared by software reading SR1 register followed reading SR2, or by hardware
// when PE=0.
// Note: Reading I2C_SR2 after reading I2C_SR1 clears the ADDR flag, even if the ADDR flag was
// set after reading I2C_SR1. Consequently, I2C_SR2 must be read only when ADDR is found
// set in I2C_SR1 or when the STOPF bit is cleared.
status = addrBase->SR1;
status = addrBase->SR2;
// Reset the index and receive count
buffers->txIndex = 0;
buffers->rxCount = 0;
// setup to ACK any Rx'd bytes
I2C_AcknowledgeConfig(addrBase, ENABLE);
return;
}
// Slave receiver mode
if (I2C_GetITStatus(addrBase, I2C_IT_RXNE) == SET)
{
// I2C_IT_RXNE: Cleared by software reading or writing the DR register
// or by hardware when PE=0.
// copy the received byte to the Rx buffer
buffers->rxBuf[buffers->rxCount] = (uint8_t)I2C_ReadRegister(addrBase, I2C_Register_DR);
if (RX_BUFFER_SIZE > buffers->rxCount)
{
buffers->rxCount++;
}
return;
}
// Slave transmitter mode
if (I2C_GetITStatus(addrBase, I2C_IT_TXE) == SET)
{
// I2C_IT_TXE: Cleared by software writing to the DR register or
// by hardware after a start or a stop condition or when PE=0.
// send any remaining bytes
I2C_SendData(addrBase, buffers->txBuf[buffers->txIndex]);
if (buffers->txIndex < buffers->txCount)
{
buffers->txIndex++;
}
return;
}
// ...STOP condition detected
if (I2C_GetITStatus(addrBase, I2C_IT_STOPF) == SET)
{
// STOPF (STOP detection) is cleared by software sequence: a read operation
// to I2C_SR1 register (I2C_GetITStatus()) followed by a write operation to
// I2C_CR1 register (I2C_Cmd() to re-enable the I2C peripheral).
// From the reference manual RM0368:
// Figure 163. Transfer sequence diagram for slave receiver
// if (STOPF == 1) {READ SR1; WRITE CR1}
// clear the IRQ status
status = addrBase->SR1;
// Write to CR1
I2C_Cmd(addrBase, ENABLE);
// read cycle (reset the status?
if (buffers->txCount > 0)
{
buffers->txCount = 0;
buffers->txIndex = 0;
}
// write cycle begun?
if (buffers->rxCount > 0)
{
// pass the I2C data to the enabled protocol handler
for (i = 0; i < buffers->rxCount; i++)
{
#if (COMM_PROTOCOL == COMM_PROTOCOL_DEBUG)
status = ProtProcRxData(buffers->rxBuf[i]);
#elif (COMM_PROTOCOL == COMM_PROTOCOL_PTEK)
status = PTEKProcRxData(buffers->rxBuf[i]);
#else
#error ** Invalid Host Protocol Selected **
#endif
if (status != ST_OK)
{
LogErr(ST_COMM_FAIL, __LINE__);
}
}
buffers->rxCount = 0;
}
return;
}
if (I2C_GetITStatus(addrBase, I2C_IT_AF) == SET)
{
// The NAck received from the host on the last byte of a transmit
// is shown as an acknowledge failure and must be cleared by
// writing 0 to the AF bit in SR1.
// This is not a real error but just how the i2c slave transmission process works.
// The hardware has no way to know how many bytes are to be transmitted, so the
// NAck is assumed to be a failed byte transmission.
// EV3-2: AF=1; AF is cleared by writing ‘0’ in AF bit of SR1 register.
I2C_ClearITPendingBit(addrBase, I2C_IT_AF);
return;
}
if (I2C_GetITStatus(addrBase, I2C_IT_BERR) == SET)
{
// There are extremely infrequent bus errors when testing with I2C Stick.
// Safer to have this check and clear than to risk an
// infinite loop of interrupts
// Set by hardware when the interface detects an SDA rising or falling
// edge while SCL is high, occurring in a non-valid position during a
// byte transfer.
// Cleared by software writing 0, or by hardware when PE=0.
I2C_ClearITPendingBit(addrBase, I2C_IT_BERR);
LogErr(ST_COMM_FAIL, __LINE__);
return;
}
if (I2C_GetITStatus(addrBase, I2C_IT_OVR) == SET)
{
// Check for other errors conditions that must be cleared.
I2C_ClearITPendingBit(addrBase, I2C_IT_OVR);
LogErr(ST_COMM_FAIL, __LINE__);
return;
}
if (I2C_GetITStatus(addrBase, I2C_IT_TIMEOUT) == SET)
{
// Check for other errors conditions that must be cleared.
I2C_ClearITPendingBit(addrBase, I2C_IT_TIMEOUT);
LogErr(ST_COMM_FAIL, __LINE__);
return;
}
// a spurious IRQ occurred; log it
LogErr(ST_INV_STATE, __LINE__);
}
I'm not shure if I understand you. May you should provide more information or an example about what you would like to do.
Maybe this helps:
My experience is, that in many I2C implementations the R/W-Bit is used together with the 7-bit-address, so most of the times, there is no additional function to set or reset the R/W-Bit.
So that means all addresses beyond 128 should be used to read data from slaves and all addresses over 127 should be used to write data to slaves.
There seems to be no way to determine if the transaction initiated by receipt of the address is a read or a write even though the hardware know whether the LSbit is set or clear. The intention of the master will only be known once the RXNE or TXE interrupt/bit occurs.

Embedded: SDHC SPI write issue

I am currently working at a logger that uses a MSP430F2618 MCU and SanDisk 4GB SDHC Card.
Card initialization works as expected, I also can read MBR and FAT table.
The problem is that I can't write any data on it. I have checked if it is write protected by notch, but it's not. Windows 7 OS has no problem reading/writing to it.
Though, I have used a tool called "HxD" and I've tried to alter some sectors (under Windows). When I try to save the content to SD card, the tool pop up a windows telling me "Access denied!".
Then I came back to my code for writing to SD card:
uint8_t SdWriteBlock(uchar_t *blockData, const uint32_t address)
{
uint8_t result = OP_ERROR;
uint16_t count;
uchar_t dataResp;
uint8_t idx;
for (idx = RWTIMEOUT; idx > 0; idx--)
{
CS_LOW();
SdCommand(CMD24, address, 0xFF);
dataResp = SdResponse();
if (dataResp == 0x00)
{
break;
}
else
{
CS_HIGH();
SdWrite(0xFF);
}
}
if (0x00 == dataResp)
{
//send command success, now send data starting with DATA TOKEN = 0xFE
SdWrite(0xFE);
//send 512 bytes of data
for (count = 0; count < 512; count++)
{
SdWrite(*blockData++);
}
//now send tow CRC bytes ,through it is not used in the spi mode
//but it is still needed in transfer format
SdWrite(0xFF);
SdWrite(0xFF);
//now read in the DATA RESPONSE TOKEN
do
{
SdWrite(0xFF);
dataResp = SdRead();
}
while (dataResp == 0x00);
//following the DATA RESPONSE TOKEN are a number of BUSY bytes
//a zero byte indicates the SD/MMC is busy programing,
//a non_zero byte indicates SD/MMC is not busy
dataResp = dataResp & 0x0F;
if (0x05 == dataResp)
{
idx = RWTIMEOUT;
do
{
SdWrite(0xFF);
dataResp = SdRead();
if (0x0 == dataResp)
{
result = OP_OK;
break;
}
idx--;
}
while (idx != 0);
CS_HIGH();
SdWrite(0xFF);
}
else
{
CS_HIGH();
SdWrite(0xFF);
}
}
return result;
}
The problem seems to be when I am waiting for card status:
do
{
SdWrite(0xFF);
dataResp = SdRead();
}
while (dataResp == 0x00);
Here I am waiting for a response of type "X5"(hex value) where X is undefined.
But most of the cases the response is 0x00 (hex value) and I don't get out of the loop. Few cases are when the response is 0xFF (hex value).
I can't figure out what is the problem.
Can anyone help me? Thanks!
4GB SDHC
We need to see much more of your code. Many µC SPI codebases only support SD cards <= 2 GB, so using a smaller card might work.
You might check it yourself: SDHC needs a CMD 8 and an ACMD 41 after the CMD 0 (GO_IDLE_STATE) command, otherwise you cannot read or write data to it.
Thank you for your answers, but I solved my problem. It was a problem of timing. I had to put a delay at specific points.