Calling API from PigLatin - apache-pig

Complete newbie to PigLatin, but looking to pull data from the MetOffice DataPoint API e.g.:
http://datapoint.metoffice.gov.uk/public/data/val/wxfcs/all/xml/350509?res=3hourly&key=abc123....
...into Hadoop.
My question is "Can this be undertaken using PigLatin (from within Pig View, in Ambari)"?
I've hunted round for how to format a GET request into the code, but without luck.
Am I barking up the wrong tree? Should I be looking to use a different service within the Hadoop framework to accomplish this?

It is very bad idea to make calls to external services from inside of map-reduce jobs. The reason being that when running on the cluster your jobs are very scalable whereas the external system might not be so. Modern resource managers like YARN make this situation even worse, when you swamp external system with the requests your tasks on the cluster will be mostly sleeping waiting for reply from the server. The resource manager will see that CPU is not being used by tasks and will schedule more of your tasks to run which will make even more requests to the external system, swamping it with the requests even more. I've seen modest 100 machine cluster putting out 100K requests per second.
What you really want to do is to either somehow get the bulk data from the web service or setup a system with a queue and few controlled number of workers that will pull from the external system at set rate.
As for your original question, I don't think PigLatin provides such service, but it could be easily done with UDFs either Python or Java. With Python you can use excellent requests library, which will make your UDF be about 6 lines of code. Java UDF will be little bit more verbose, but nothing terrible by Java standards.

"Can this be undertaken using PigLatin (from within Pig View, in
Ambari)"?
No, by default Pig load from HDFS storage, unless you write your own loader.
And i share same point with #Vlad, that this is not a good idea, you have many other other components used for data ingestion, but this not a use case of Pig !

Related

Apache Airflow or Apache Beam for data processing and job scheduling

I'm trying to give useful information but I am far from being a data engineer.
I am currently using the python library pandas to execute a long series of transformation to my data which has a lot of inputs (currently CSV and excel files). The outputs are several excel files. I would like to be able to execute scheduled monitored batch jobs with parallel computation (I mean not as sequential as what I'm doing with pandas), once a month.
I don't really know Beam or Airflow, I quickly read through the docs and it seems that both can achieve that. Which one should I use ?
The other answers are quite technical and hard to understand. I was in your position before so I'll explain in simple terms.
Airflow can do anything. It has BashOperator and PythonOperator which means it can run any bash script or any Python script.
It is a way to organize (setup complicated data pipeline DAGs), schedule, monitor, trigger re-runs of data pipelines, in a easy-to-view and use UI.
Also, it is easy to setup and everything is in familiar Python code.
Doing pipelines in an organized manner (i.e using Airflow) means you don't waste time debugging a mess of data processing (cron) scripts all over the place.
Nowadays (roughly year 2020 onwards), we call it an orchestration tool.
Apache Beam is a wrapper for the many data processing frameworks (Spark, Flink etc.) out there.
The intent is so you just learn Beam and can run on multiple backends (Beam runners).
If you are familiar with Keras and TensorFlow/Theano/Torch, the relationship between Keras and its backends is similar to the relationship between Beam and its data processing backends.
Google Cloud Platform's Cloud Dataflow is one backend for running Beam on.
They call it the Dataflow runner.
GCP's offering, Cloud Composer, is a managed Airflow implementation as a service, running in a Kubernetes cluster in Google Kubernetes Engine (GKE).
So you can either:
manual Airflow implementation, doing data processing on the instance itself (if your data is small (or your instance is powerful enough), you can process data on the machine running Airflow. This is why many are confused if Airflow can process data or not)
manual Airflow implementation calling Beam jobs
Cloud Composer (managed Airflow as a service) calling jobs in Cloud Dataflow
Cloud Composer running data processing containers in Composer's Kubernetes cluster environment itself, using Airflow's KubernetesPodOperator (KPO)
Cloud Composer running data processing containers in Composer's Kubernetes cluster environment with Airflow's KPO, but this time in a better isolated fashion by creating a new node-pool and specifying that the KPO pods are to be run in the new node-pool
My personal experience:
Airflow is lightweight and not difficult to learn (easy to implement), you should use it for your data pipelines whenever possible.
Also, since many companies are looking for experience using Airflow, if you're looking to be a data engineer you should probably learn it
Also, managed Airflow (I've only used GCP's Composer so far) is much more convenient than running Airflow yourself, and managing the airflow webserver and scheduler processes.
Apache Airflow and Apache Beam look quite similar on the surface. Both of them allow you to organise a set of steps that process your data and both ensure the steps run in the right order and have their dependencies satisfied. Both allow you to visualise the steps and dependencies as a directed acyclic graph (DAG) in a GUI.
But when you dig a bit deeper there are big differences in what they do and the programming models they support.
Airflow is a task management system. The nodes of the DAG are tasks and Airflow makes sure to run them in the proper order, making sure one task only starts once its dependency tasks have finished. Dependent tasks don't run at the same time but only one after another. Independent tasks can run concurrently.
Beam is a dataflow engine. The nodes of the DAG form a (possibly branching) pipeline. All the nodes in the DAG are active at the same time, and they pass data elements from one to the next, each doing some processing on it.
The two have some overlapping use cases but there are a lot of things only one of the two can do well.
Airflow manages tasks, which depend on one another. While this dependency can consist of one task passing data to the next one, that is not a requirement. In fact Airflow doesn't even care what the tasks do, it just needs to start them and see if they finished or failed. If tasks need to pass data to one another you need to co-ordinate that yourself, telling each task where to read and write its data, e.g. a local file path or a web service somewhere. Tasks can consist of Python code but they can also be any external program or a web service call.
In Beam, your step definitions are tightly integrated with the engine. You define the steps in a supported programming language and they run inside a Beam process. Handling the computation in an external process would be difficult if possible at all*, and is certainly not the way Beam is supposed to be used. Your steps only need to worry about the computation they're performing, not about storing or transferring the data. Transferring the data between different steps is handled entirely by the framework.
In Airflow, if your tasks process data, a single task invocation typically does some transformation on the entire dataset. In Beam, the data processing is part of the core interfaces so it can't really do anything else. An invocation of a Beam step typically handles a single or a few data elements and not the full dataset. Because of this Beam also supports unbounded length datasets, which is not something Airflow can natively cope with.
Another difference is that Airflow is a framework by itself, but Beam is actually an abstraction layer. Beam pipelines can run on Apache Spark, Apache Flink, Google Cloud Dataflow and others. All of these support a more or less similar programming model. Google has also cloudified Airflow into a service as Google Cloud Compose by the way.
*Apache Spark's support for Python is actually implemented by running a full Python interpreter in a subprocess, but this is implemented at the framework level.
Apache Airflow is not a data processing engine.
Airflow is a platform to programmatically author, schedule, and
monitor workflows.
Cloud Dataflow is a fully-managed service on Google Cloud that can be used for data processing. You can write your Dataflow code and then use Airflow to schedule and monitor Dataflow job. Airflow also allows you to retry your job if it fails (number of retries is configurable). You can also configure in Airflow if you want to send alerts on Slack or email, if your Dataflow pipeline fails.
I am doing the same as you with airflow, and I've got very good results. I am not very sure about the following: Beam is machine learning focused and airflow is for anything you want.
Finally you can create a hive with kubernetes +airflow.

Running multiple Kettle transformation on single JVM

We want to use pan.sh to execute multiple kettle transformations. After exploring the script I found that it internally calls spoon.sh script which runs in PDI. Now the problem is every time a new transformation starts it create a separate JVM for its executions(invoked via a .bat file), however I want to group them to use single JVM to overcome memory constraints that the multiple JVM are putting on the batch server.
Could somebody guide me on how can I achieve this or share the documentation/resources with me.
Thanks for the good work.
Use Carte. This is exactly what this is for. You can startup a server (on the local box if you like) and then submit your jobs to it. One JVM, one heap, shared resource.
Benefit of that is then scalability, so when your box becomes too busy just add another one, also using carte and start sending some of the jobs to that other server.
There's an old but still current blog here:
http://diethardsteiner.blogspot.co.uk/2011/01/pentaho-data-integration-remote.html
As well as doco on the pentaho website.
Starting the server is as simple as:
carte.sh <hostname> <port>
There is also a status page, which you can use to query your carte servers, so if you have a cluster of servers, you can pick a quiet one to send your job to.

How to proceed with query automation using Import.io

I've successfully created a query with the Extractor tool found in Import.io. It does exactly what I want it to do, however I need to now run this once or twice a day. Is the purpose of Import.io as an API to allow me to build logic such as data storage and schedules tasks (running queries multiple times a day) with my own application or are there ways to scheduled queries and make use of long-term storage of my results completely within the Import.io service?
I'm happy to create a Laravel or Rails app to make requests to the API and store the information elsewhere but if I'm reinventing the wheel by doing so and they provides the means to address this then that is a true time saver.
Thanks for using the new forum! Yes, we have moved this over to Stack Overflow to maximise the community atmosphere.
At the moment, Import does not have the ability to schedule crawls. However, this is something we are going to roll out in the near future.
For the moment, there is the ability to set a Cron job to run when you specify.
Another solution if you are using the free version is to use a CI tool like travis or jenkins to schedule your API scripts.
You can query live the extractors so you don't need to make them run manually every time. This will consume one of your requests from your limit.
The endpoint you can use is:
https://extraction.import.io/query/extractor/extractor_id?_apikey=apikey&url=url
Unfortunately the script will not be a very simple one since most websites have very different respond structures towards import.io and as you may already know, the premium version of the tool provides now with scheduling capabilities.

Use IronWorkers while using my work

My website is hosted on AWS Elastic Beanstalk (PHP). I use Yii Framework as an MVC.
A while ago I wanted to run a SQL query everyday. I looked up how to run crons on Beanstalk and it seemed complicated to merge the concepts of Cloud and Cron. I ran into Iron Worker (http://www.iron.io/worker), and managed to create a worker that is currently doing its job fine.
Today I want to run a more complex cron (Look for notifications in my database, decide whether to send an email, build an email template and send the email (via AWS SES).
From what I understand, worker files are supposed to be self-contained items, with everything they need to work.
However, I have invested a lot of time and effort in building my MVC. I have complex models, verifications, an email templating engine, etc...
It seems very difficult to use the work I've done to create an Iron Worker. Even if I managed to port all of my code to a worker (which seems like a great deal of work), it means anytime I make changes to my main code I need to make sure the worker also has those changes. It means I would have a "branch" of my code. Even more so if I want to create more workers in the future.
What is the correct approach?
Short-term, you could likely just use the scheduling capabilities in IronWorker and have the worker hit an endpoint in your application. The endpoint will then trigger the operations to run within your app environment.
Longer-term, we do suggest you look at more of a service-oriented approach whereby you break your application up to be more loose-coupled and distributed. Here's a post on the subject. The advantages are many especially around scalability and development agility.
https://blog.heroku.com/archives/2013/12/3/end_monolithic_app
You can also take a look at this YII addition.
http://www.yiiframework.com/extension/yiiron/
Certainly don't want you rewrite your app unnecessarily but there are likely areas where you can look to decouple. Suggest creating a worker directory and making efforts to write the workers to be self-contained. In that way, you could run them in a different environment and just pass payloads to the worker. (Push queues can also be used to push to these workers.) Once you get used to distributed async processing, it's a pretty easy process to manage.
(Note: I work at Iron.io)

Is there a way to leverage Hadoop tools to mange parallel REST API calls to external sources?

I am writing software that creates a large graph database. The software needs to access dozens of different REST APIs with millions of total requests. The data will then be processed by the Hadoop cluster. Each of these APIs have rate limits that vary by requests/second, per window, per day and per user (typically via OAuth).
Does anyone have any suggestions on how I might use either a Map function or other Hadoop-ecosystem tool to manage these queries? The goal would to be to leverage the parallel processing in Hadoop.
Because of the varied rate limits, it often makes sense to switch to a different API query while waiting for the first limit to reset. An example would be one API call that creates nodes in the graph and another that enriches the data for that node. I could have the system go out and enrich the data for the new nodes while waiting for the first API limit to reset.
I have tried using SQS queuing on EC2 to manage the various API limits and states (creating a queue for each API call), but have found it to be ridiculously slow.
Any ideas?
It looks like the best option for my scenario will be using Storm, or specifically the Trident abstraction. It gives me the greatest flexibility for both workload management but process management as well