How to proceed with query automation using Import.io - import.io

I've successfully created a query with the Extractor tool found in Import.io. It does exactly what I want it to do, however I need to now run this once or twice a day. Is the purpose of Import.io as an API to allow me to build logic such as data storage and schedules tasks (running queries multiple times a day) with my own application or are there ways to scheduled queries and make use of long-term storage of my results completely within the Import.io service?
I'm happy to create a Laravel or Rails app to make requests to the API and store the information elsewhere but if I'm reinventing the wheel by doing so and they provides the means to address this then that is a true time saver.

Thanks for using the new forum! Yes, we have moved this over to Stack Overflow to maximise the community atmosphere.
At the moment, Import does not have the ability to schedule crawls. However, this is something we are going to roll out in the near future.
For the moment, there is the ability to set a Cron job to run when you specify.

Another solution if you are using the free version is to use a CI tool like travis or jenkins to schedule your API scripts.
You can query live the extractors so you don't need to make them run manually every time. This will consume one of your requests from your limit.
The endpoint you can use is:
https://extraction.import.io/query/extractor/extractor_id?_apikey=apikey&url=url
Unfortunately the script will not be a very simple one since most websites have very different respond structures towards import.io and as you may already know, the premium version of the tool provides now with scheduling capabilities.

Related

What is the most performant way to submit a POST to an API

A little background on what I am needing to accomplish. I am a developer of a cloud-based SaaS application. In one instance, my clients use my application to log the receipt of goods as they come across a conveyor line. Directly before the PC where they are logged into my app, there is another Windows PC that is collecting from instruments, the moisture and weight of the item. I (personally not my app) have full access to this pc and its database. I know how I am going to grab the latest record from the db via stored procedure/SQLCMD.
On the receiving end, I have an API endpoint that needs to receive the ID, Weight, Moisture, and ClientID. This all needs to happen in less than ~2 seconds since they are waiting to add this record to the my software's database.
What is the most-perfomant way for me to stand up a process that triggers retrieving the record from the db and then calls the API? I also want to update the record flagging success for 200 response. My thoughts were to script all of this in a batch file and use cURL to make the API call. Then call this batch file from a task in windows. But I feel like there may be a better way with less moving parts.
P.S. I am not looking for code solutions per say, just direction or tools that will help, also I am using the AWS stack to host my application.
The most performant way is to use AWS Amplify, its ready aws framework and development environment that can connect your existing DB to a REST API easily
you can check their documentation on how to build it
https://docs.amplify.aws/lib/restapi/getting-started/q/platform/js

Dynamic scheduler on GCP

Does GCP have a job scheduling service like Azure Scheduler, where jobs can be scheduled and managed dynamically via API?
Google Cron service is set in a static file and it seems like their answer to this is to use that to poke a roll your own service backed with PubSub and a data store. Looking for Quartz-like functionality, consumable by APP engine, which can be managed and invoked via API as opposed to managing a cluster, queue, and compute instance/VM deployment of Quartz (or the like) or rolling a custom solution. Should support 50 million simultaneous jobs per day with retry / recoverability and dynamic scheduling per tenant capabilities.
This is the cheapest and easiest way I can imagine building a solution today on top of an existing AppEngine based project:
As you observed, currently there is no such API/service directly available on GCP. There is an open feature request (on GAE) for it.
But, also as you observed, it is possible to build and use a custom solution, just like the one you proposed.
Depending on the context even simpler solutions are possible. For a GAE context check out, for example, How to schedule repeated jobs or tasks from user parameters in Google App Engine?.

Automating scaleup of Streaming units - Stream analytics job

We would like to automate scale up of streaming units for certain stream analytics job if the 'SU utilization' is high. Is it possible to achieve this using PowerShell? Thanks.
Firstly, as Pete M said, we could call REST API to create or update a transformation within a job.
Besides, Azure Stream Analytics Cmdlets New-AzureRmStreamAnalyticsTransformation could be used to update a transformation within a job.
Depends on what you mean by "automate". You can update a transformation via the API from a scheduled job, including streaming unit allocation. I'm not sure if you can do this via the PS object model but you can always make a rest call:
https://learn.microsoft.com/en-us/rest/api/streamanalytics/stream-analytics-transformation
If you mean you want to use powershell to create and configure a job to automatically scale on its own, unfortunately today that isn't possible regardless of how you create the job. ASA doesn't support elastic scaling. You have to do it "manually", either by hand or some manner of scheduled webjob or similar.
It is three years later now, but I think you can use App Insights to automatically create an alert rule based on percent utilization. Is it an absolute MUST that you use powershell? If so, there is an Azure Automation Script on Github:
https://github.com/Azure/azure-stream-analytics/blob/master/Autoscale/StepScaleUp.ps1

Calling API from PigLatin

Complete newbie to PigLatin, but looking to pull data from the MetOffice DataPoint API e.g.:
http://datapoint.metoffice.gov.uk/public/data/val/wxfcs/all/xml/350509?res=3hourly&key=abc123....
...into Hadoop.
My question is "Can this be undertaken using PigLatin (from within Pig View, in Ambari)"?
I've hunted round for how to format a GET request into the code, but without luck.
Am I barking up the wrong tree? Should I be looking to use a different service within the Hadoop framework to accomplish this?
It is very bad idea to make calls to external services from inside of map-reduce jobs. The reason being that when running on the cluster your jobs are very scalable whereas the external system might not be so. Modern resource managers like YARN make this situation even worse, when you swamp external system with the requests your tasks on the cluster will be mostly sleeping waiting for reply from the server. The resource manager will see that CPU is not being used by tasks and will schedule more of your tasks to run which will make even more requests to the external system, swamping it with the requests even more. I've seen modest 100 machine cluster putting out 100K requests per second.
What you really want to do is to either somehow get the bulk data from the web service or setup a system with a queue and few controlled number of workers that will pull from the external system at set rate.
As for your original question, I don't think PigLatin provides such service, but it could be easily done with UDFs either Python or Java. With Python you can use excellent requests library, which will make your UDF be about 6 lines of code. Java UDF will be little bit more verbose, but nothing terrible by Java standards.
"Can this be undertaken using PigLatin (from within Pig View, in
Ambari)"?
No, by default Pig load from HDFS storage, unless you write your own loader.
And i share same point with #Vlad, that this is not a good idea, you have many other other components used for data ingestion, but this not a use case of Pig !

Use IronWorkers while using my work

My website is hosted on AWS Elastic Beanstalk (PHP). I use Yii Framework as an MVC.
A while ago I wanted to run a SQL query everyday. I looked up how to run crons on Beanstalk and it seemed complicated to merge the concepts of Cloud and Cron. I ran into Iron Worker (http://www.iron.io/worker), and managed to create a worker that is currently doing its job fine.
Today I want to run a more complex cron (Look for notifications in my database, decide whether to send an email, build an email template and send the email (via AWS SES).
From what I understand, worker files are supposed to be self-contained items, with everything they need to work.
However, I have invested a lot of time and effort in building my MVC. I have complex models, verifications, an email templating engine, etc...
It seems very difficult to use the work I've done to create an Iron Worker. Even if I managed to port all of my code to a worker (which seems like a great deal of work), it means anytime I make changes to my main code I need to make sure the worker also has those changes. It means I would have a "branch" of my code. Even more so if I want to create more workers in the future.
What is the correct approach?
Short-term, you could likely just use the scheduling capabilities in IronWorker and have the worker hit an endpoint in your application. The endpoint will then trigger the operations to run within your app environment.
Longer-term, we do suggest you look at more of a service-oriented approach whereby you break your application up to be more loose-coupled and distributed. Here's a post on the subject. The advantages are many especially around scalability and development agility.
https://blog.heroku.com/archives/2013/12/3/end_monolithic_app
You can also take a look at this YII addition.
http://www.yiiframework.com/extension/yiiron/
Certainly don't want you rewrite your app unnecessarily but there are likely areas where you can look to decouple. Suggest creating a worker directory and making efforts to write the workers to be self-contained. In that way, you could run them in a different environment and just pass payloads to the worker. (Push queues can also be used to push to these workers.) Once you get used to distributed async processing, it's a pretty easy process to manage.
(Note: I work at Iron.io)