I'm currently in a project of making a video game, to be specific, a turn-based strategy in OCAML. It's a coursework about functional programming, so the more functional programming the better, but if I can't do it with functional programming, I can use OOP if REALLY needed.
Here's the model of my game at the basic level :
In the following, when I say type, I actually mean instance/type/module, i.e. I don't know how I should implement it, but I know that they should be at least packaged into different sections.
There will be a Main type. It's role is to switch between menus, settings, and the actual game.
The Game type will run the game. In context, it will iterate over each Faction of the game, and iterate, within the Faction, each Unit that the faction has. Each Unit will have a specific behaviour attached to it.
Every game object ( that can be rendered in a 2D screen ) will have the GameObject type. Ideally, I can attach a bunch of video/audio/etc. renderer and I will be able to know their position on the map.
Grid will be an array of array composed of Tile. Grid has a global view over the game, from Grid, I can, for example, know the location of every GameObject in the Game
Tile is a tile on the grid. Eventually, I would like them to have special features, for example, a terrain type.
Unit ( not to be confused with unit type from OCAML ) is an entity controlled by a Faction. It has many attributes, such as health, mana, strength etc... and can do certain actions depending on who they are.
Faction represents either the player or one of the opponents. Some bonus apply depending on the faction. e.g. a faction could have greater health, but lower strength and vice-versa.
Action is a type that represents an action. It has a source and a destination attributes. It can represent, any type of action, from self healing to an AOE spell. It has access to Game so that it can be free to do whatever it pleases within the Game.
My goal is to make a game model that I can improve on progressively. For instance, I would like to make subclasses of unit, those who can attack from afar, and those who can only attack in melee etc.
If this was a OOP project, it would be pretty straightforward, albeit inefficient if I understood the previous comments. As you can see, my way of thinking is biased towards OOP because I haven't done any project of this scale without OOP. My goal here is to make it in Functional Programming.
I require your advice on how to implement what I described, or part of it so I can figure out the rest on my own.
Thank you.
EDIT: Edited the whole question
EDIT2: Some spelling and backticks
Your question is filled with imperative and OOP idioms: iterate, array, object, subclasses, ... So your mind set seems to be already made up.
Not surprising as GUIs and games are the most obvious examples for OOP. They have state and mutate over time and thrive on inheritance. And while you can do all those things functionally, with functors or with with first class modules I don't think it is worth it.
Luckily ocaml lends itself well to this. Records and classes can have mutable fields and ocamls classes can model your objects and inheritance nicely. And you still can use all the functional concepts of ocaml alongside the classes. It mixes well.
Currently I am trying my best programming a little video game in the style of the old Zelda games. However, I am having some trouble with the whole OOP style of thinking. To be more specific, I don't really know how to "design" the screens.
Let's say I have a class for my sprites and loaded a Wall-sprite to have a border for a certain area, should I make an extra "wall"-class, or is the wall being a "sprite" already enough? I thought it might be senseless to define an extra class since it would not have any different variables than the actual sprite class (as my wall IS only a sprite) so I didn't consider it to be a useful idea.
I am asking this because I have a little problem with the collision detection as well: What I currently do is loading a sprite for an object only once and rendering it multiple times at several locations. But the problem is that this causes the collision only to be detected at the last position the sprite was rendered at.
It gives me more problems when I render 2 cave-entrances somewhere but my game only checks for the 2nd entrance if I "entered" it.
So I thought making an extra "entrance"-class and creating 2 completely different objects of it that are treated separately might help, but should I then also create 30 objects for my wall-sprites?
Hmmm, there is really two questions, well three, but the OOP-thinking is too non-specific for a good question. So let's see if we can answer it by answering your valid ones.
Good OO Design is centered around "Patterns" (Common solutions to a variety of Problems) in the case of your sprite re-use in OO this would be known as a "Fly-weight" Pattern. Three important structural elements in good OO and understanding them is key to "getting it". They are:
Interfaces - They are free (relatively) of operational code, and provide only method and constructor signatures(generally) to allow for clean separation of coding concerns.
Classes - Only the reusable parts(ideally) of an object they are "the Mold or Pattern" that objects are instantiated (or patterned) from.
Objects - Instances (this chair or that chair as opposed, to Chair as an ideal) of the same form of Class (the ideal Chair). Objects (ideally) should keep as instance values only that which differentiates it from other instances of the same ideal.
However, because your original sprite is not an object you are having this collision problem, because it actually is the same instance rendered again and again, the graphics pipeline does not keep all of its previous locations as separate things it actual just stores pixels(usually), once they've been translated.
In this case if each instance is an object, each instance would have its location as a local instance variable(s), while its graphical representation and collision detection method would be common to all instances of the class.
Don't think of it as having 30 whole copies in memory at once, you only have thirty copies of the instance variables. This is true if you use OO or not; in a procedural solution to get proper collision detection you would have to maintain an array of all of the places you rendered that sprite and iterate through each time, further your code would be less cleanly separated and you would have to iterate through the array for every sprite interaction as well as for updating moving sprites. With OO you could handle this with one class method call that recurses it children.
A good class structure for this simple example might be:
An Abstract Sprite Class (abstract because you will never use a non-specific Sprite) containing only code common to all sprites
A Concrete Wall Sprite Class that extends Sprite, only the code for non-moving wall sprites.
A Concrete Trigger Sprite Class (whose graphic might be clear or null) for behaviors that need to be triggered in "open spaces"
A Concrete Agent Sprite Class for moving sprites (might implement a movable interface meaning all derivatives of the class have a move() method.
A Concrete Character class that extends agent for a movable sprite that is driven by user commands.
It may seem confusing at first, but it's actually cleaner, simpler, and more maintainable doing it the OO way.
:)
So I am developing a web text-based game and whatever business requirement shows up it adds a new method to the Player class. If you have developed a game in OOP way you possible know what I am talking about.
On my daily job I am developing a game server project and again, it has a HUGE Player class. The way they made that class to not be even bigger is making something like "managers": PlayerAttributeManager, PlayerFoodManager and those are just examples. So you would not call Player.getFood, Player.getTastyFood and so on, but those would be in PlayerFoodManager for example.
A friend was making a game for android and again most if his logic was in the Player class. However a huge Player class does not break the design patterns I think, because in those games a Player can do so much things and everything is related to the player.
Please give me any advice on how to have a smaller class when creating a game.
A way to keep your Player class small(er) is to take the OOP pattern further. Let's assume that your player does, at the moment, know about food, knows how to eat, etc. Why not factor out those things and take a different point of view: Your player has, for want of a better word, a digestion - or, in OOP, an attribute of type "Digestion", which is in itself a class covering hunger, eating, etc.
A similar principle can be applied to other aspects of your player.
At the end, your player would have fields of type Digestion, Health, Armory, ..., and these aspects would be self-contained classes, keeping the player class small.
Of course, health would have some interaction with digestion presumably - this can be managed by using interfaces.
Context:
In a game, when each level is completed, a Rating is stored based on player performance: Poor, Good, Excellent.
The ratings are later used to evaluate the game play as a whole.
Question:
Should the Rating object contain a rating choice as an enum {RatingPoor, RatingGood, RatingExcellent} or should I make an abstract base class Rating with subclasses RatingPoor, RatingGood, RatingExcellent.
Other details
Ratings don't have complex behaviors, they are just generated from play stats at a very low frequency like every minute. They're assigned to a collection and averaged at the end of a game to generate a Rank (like Cadet, Pilot, Captain, Admiral). At the end of a level, the rating is shown as an icon (think stars, like in Angry Birds). They also get stored when the player pauses or suspends the game.
I would also appreciate knowing how to decide on enum vs. subclass, given this context.
This situation is basic enough that you should just use an enum. I typically use enum's when something can be represented by an integer (a mode, a setting, or in your case, a rating,). A subclass is only necessary if your ratings would include additional attributes or relationships.
I think that a subclass would be overkill for this situation, as it doesn't sound like you're attaching any particular methods to each rating. I would use an enum.
I'm no expert in software design, but I generally err towards using the simplest data structures that will get a job done-- in general, if the problem doesn't require you to have methods travelling with the data, a class would be more heavyweight than necessary.
Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
This question does not appear to be about programming within the scope defined in the help center.
Closed 9 years ago.
Improve this question
My relative is studying programming and has a hard time understanding classes. He has trouble understanding for example that you need to instantiate it, that methods cannot access variables in other methods and if you change a variable in one instance of a class it doesn't change for other instances.
I've tried to use analogies like a class definition is like a blueprint of a house. And instances are houses made from that blueprint.
How do you explain classes and OO in general?
Seriously use Animals, it works great. And that's what nailed the concept for me years ago. Just found this C# code. It seems good
// Assembly: Common Classes
// Namespace: CommonClasses
public interface IAnimal
{
string Name
{
get;
}
string Talk();
}
// Assembly: Animals
// Namespace: Animals
public class AnimalBase
{
private string _name;
AnimalBase(string name)
{
_name = name;
}
public string Name
{
get
{
return _name;
}
}
}
// Assembly: Animals
// Namespace: Animals
public class Cat : AnimalBase, IAnimal
{
public Cat(String name) :
base(name)
{
}
public string Talk() {
return "Meowww!";
}
}
// Assembly: Animals
// Namespace: Animals
public class Dog : AnimalBase, IAnimal
{
public Dog(string name) :
base(name)
{
}
public string Talk() {
return "Arf! Arf!";
}
}
// Assembly: Program
// Namespace: Program
// References and Uses Assemblies: Common Classes, Animals
public class TestAnimals
{
// prints the following:
//
// Missy: Meowww!
// Mr. Bojangles: Meowww!
// Lassie: Arf! Arf!
//
public static void Main(String[] args)
{
List<IAnimal> animals = new List<IAnimal>();
animals.Add(new Cat("Missy"));
animals.Add(new Cat("Mr. Bojangles"));
animals.Add(new Dog("Lassie"));
foreach(IAnimal animal in animals)
{
Console.WriteLine(animal.Name + ": " + animal.Talk());
}
}
}
And once he's got this nailed, you challenge him to define Bird (fly), and then Penguin (fly!?)
The best way I got it through to my wife (a chartered accountant) is as follows.
In 'regular' programming you have data (things that are manipulated) and code (things that manipulate) and they're separate. Sometimes you get mixed up because a certain piece of code tries to manipulate the wrong thing.
In my wife's case, I said a invoice arrived (which involves no physical money changing hands) and accidentally updated a bank balance, something she immediately saw as potential fraud (she used to do forensic accounting, everything is potential fraud to her, including most of my share trades :-).
You could just as easily say that a piece of code meant to wash a floor with a huge mop decided to do it with your toothbrush.
With OO programming, the manipulators and manipulatees are inextricably entwined. You don't apply the floor washing process to the floor, instead you command the floor to wash itself. It knows how to do this because the code is part of the object, not something external to it.
In the accounting case above, I think we ended up having the chart of accounts as the object and we told it to apply a invoice to itself. Since it understood the process, it knew which accounts were allowed to be updated (creditors liability account and an expense account if I remember correctly).
Anyway, that's irrelevant and I'm just meandering now. What I'm saying is to express it in terms your target audience will understand. I suppose that's the secret of most teaching.
Like all old farts, I'd like to answer this with a story from my own life.
I started programming basic on a VIC-20. Not knowing anything else, I though this was how all computers were programmed. I thought it was a bit hard to keep track of which variable names I had used and which were still free, (scope problem). I also thought it was hard to divide my program into repeatable chunks using gosub-return and setting and reading the variables that these would use, (lack of methods).
Then I got into Turbo C over MS-DOS. Now I could create my own methods and functions! I was no longer stuck with the old finite set of commands in basic. I felt like I was creating a new language for every program I wrote. C gave me more expressive power.
C++ was the first object oriented language I heard about. The big moment for me was when I understood that I could create my own data types, and even overload the operators. Again, it felt like I could create my own language containing both new functions and data types, complete with operators.
That's how I would sell OO to a new programmer. Explain that it gives expressive power because they can define their own data types. I always thought encapsulation was a better selling point than inheritance.
I assume the target knows how to use graphical user interfaces. I found the best way is to describe OOP with stuff that they are really used for. Say
Class
A Window is a class. It has methods like
Show a window
Enable a window
Set the window's title
A Window has attributes. That is data associated with it. It is encapsulated into the class, together with the functions that operate on them
A Window has dimensions. Width and height.
A Window has possibly a parent window, and possibly children.
A Window has a title
Object
There are many windows. Each particular window is an object of the class Window. A Parent window containing 10 windows makes 11 Window objects.
Deriveration
A Button is a Window. It has dimensions has a parent window and has a title, the label of a button. It's a special kind of a window. When you ask for a window object, someone can give you a Button. A Button can add functions and data that are specific for a button:
A Button has a state. It can be in a pressed state, and unpressed state.
A Button can be the default button in a Window.
While you are explaining OO with animals, do not forget to illustrate the "is-a" relationship with Stinger missiles-armed kangaroos ;-)
The kangaroos scattered, as predicted, and the Americans nodded appreciatively . . . and then did a double-take as the kangaroos reappeared from behind a hill and launched a barrage of stinger missiles at the hapless helicopter. (Apparently the programmers had forgotten the remove "that" part of the infantry coding).
The lesson? Objects are defined with certain attributes, and any new object defined in terms of the old one inherits all the attributes. The embarrassed programmers had learned to be careful when reusing object-oriented code, and the Yanks left with the utmost respect for the Australian wildlife.
Read the Java tutorials for some good ideas and real world examples.
How about "each molding is built using a mold", or "each model is built using a template", and so "each object is built using a class" ?
Note that it works for class-oriented OOP (which is what you want), but not for prototype-oriented OOP.
As for explaining OOP to a programmer, I'd add examples illustrating:
Separating state from behavior
Most of the time, an instance describe a state, and a class describe a behavior.
Delegation
An instance delegates its behavior to its class, and the class in turn can delegate its behavior to its superclasses (or mixins or traits)
Polymorphism
If class A inherits from class B, an instance of A can be used anywhere an instance of class B can be used.
Messages & methods
A message (or generic function, or virtual function) is like a question. Most of the time, several classes can answer to this question.
A corresponding method is a possible answer to the question, that resides in a class.
When sending a message to an instance, the instance looks up for a corresponding method in its class. If found, it calls it (with the instance bound to 'self' or 'this'. Otherwise, it looks for a corresponding method in its mixins, traits, or superclasses, and calls it.
If they're old enough to have ever filled out a tax form, show them a 1040EZ and explain that an instance of a class is like a filled-out form: each blank is a member variable of the object, and the form also includes instructions for what to do with the member variables, and those instructions are the member functions of the object. A class itself is like a master copy of the form, from which you can print off an endless number of blank forms to fill out.
One thing that I would counsel to AVOID in trying to communicate the concepts of OO to new programmers is using only examples where objects (in the OO sense) represent real-world physical objects. This will actually make students more confused when they encounter objects used to represent non-physical objects (such as a color scheme, or most of the behavioral patterns in "Design Patterns") or objects used just as a useful way to store related functions and related data in the same place (think Java's java.lang.Math for an example.)
Believe it or not, sports!
I've had success in teaching and mentoring by talking about the way that e.g. a play for a football team is described in terms of how the various positions (Center, Quarterback, Runningback, etc.) interact to accomplish a particular goal. In one version, the positions correspond to classes, and specific persons (Tony Romo, Johnny Unitas, etc.) are instances of the class -- individuals who exhibit the same behaviors as defined by the positions.
The second version of this metaphor is to explain that the positions may be interfaces (in the Java sense) rather than classes. An interface really represents a role fulfilled by any object that implements the methods of the interface. And it's perfectly reasonable for an object (via its class, in Java) to implement multiple interfaces, just as it is possible for a talented individual to play more than one position on a sports team.
Finally, the play is like a pattern, in that it describes how a set of roles interact to accomplish some specific goal.
An object is a black box, which you can't see through. Public methods are buttons on them. Protected methods are buttons hidden on the bottom, private methods are dip switches inside.
Let's see a washer as an object. We don't know how it works. We don't care if it's powered by natural gas, diesel, electricity, or plutonium. However, the mechanism and internal structure will vary greatly depending on the energy source like a combustion engine is needed for some. We don't care as long as if we push a "Wash" button, it washes our clothes.
Let's turn the washer not Object-oriented. Expose all the buttons by arranging them on the top. Customers can now turbo-charge the engine by tweaking some dip switches. Make the chassis transparent. Now, you can see your energy-saving washing machine is actually hybrid-powered. There are some monkeys in it. You free them into the wild, and the machine eats up your utility bill like a gas-guzzler.
Object-oriented programming is one technique of raising the level of abstraction by means of which the programmer communicates with the computer: from the level of flipping individual bits on and off, from the level of punching holes in paper cards, from the level of extraordinarily complex sequences of basic instruction codes, from the level of less complicated definitions of reusable templates for blocks of data and reusable blocks of code (structs and procedures), to the level of transcribing the concepts in the programmer's mind into code, so that what goes on inside the computer comes to resemble, for the programmer, what goes on outside the computer in the world of physical objects, intangible assets, and cause-and-effect.
the best book i've ever on object-oriented programming is Betrand's "Object-Oriented Software Construction" - if you really want to get the basics, there is no way around it.
I explain that procedural program is built around the "verbs" of the system, the things you want the system to do, whereas object-oriented programming is build about the "nouns," the things in the system, and what they are capable of, and that for many people this allows for a more straightforward mapping from the problem domain to software.
For the example, I use cars -- "Honda Accord" is a class, whereas the vehicle sitting in the parking lot is an object, an instance of a Honda Accord. A Honda Accord is a sedan, which is a car, which is an automobile, which is a motorized vehicle, which is a mode of transportation, etc. I cannot do anything with a car until I have a physical car to work with -- it doesn't help me that the idea of a Honda Accord exists.
It also helps for discussing interfaces and polymorphism -- the gas pedal means accelerate, regardless what the car does behind the scenes to make that happen. There are "private" parts of the car that I as user do not have access to -- I cannot directly apply an individual brake.
Since the issue is to explain to a new programmer and not to a mother or a wife, I would go right straight to the point. OO is about three main concepts:
Inheritance: a dog is an animal, parent-child, is-a relationship test, etc.
Encapsulation: public-private (protected), information hiding, internal underlying details are not important to the users of the class, protect users from future changes in the implementation.
Polymorphism: run-time binding, late binding, method that gets invoked depends on the type of the object and not the reference or pointer to the object.
Also, depending on how much the new programmer has been doing a procedural language, I would need to help him/her unlearn that the functions or procedures are no longer central.
Games are good.
There are gameobjects, from this walls, enemies and players inherit.
The gameobjects should be renderable have collision-logic etc. The enemies have ai-logic while the player is keyboard controlled.
Some UI-elements are also good, there are buttons, inputboxes etc that all inherit from some baseobject that has code for managing mouse-events etc.
I don't like the animal-example because i've never seen a "real" program that has ever had to use of animals in that way. It will only make people use inheritance all over the place and you will end up with cubes inheriting from rectangles that inherit from lines (why does so many books insist on using this as example? ).
OOP is a higher level of abstraction, a programmer can't really come to grasp it unless he has a good understanding of the normal (read: procedural) way of programming, and he must be able to write some programs that do something useful.
For me it took a series of several lectures by one of my university profs, where he discussed many theoretical aspects of programming, he tried to convince us that programming is about manipulating data, and that this data is a representation of the "state(s)" of the program, and some other abstract stuff that I forgot now! But the point is, it's hard to understand OOP without some theoretical abstract discussion first, and this discussion wouldn't make any sense to a person who hadn't had experience writing some real code.
After the theoretical discussion, you give an example of a moderately complex program, written in procedural style, and slowly convert it, step by step, into object oriented style. After the concrete example, you should go back to the theoretical discussion and just summarize the main points, directly relate the theoretical constructs to the concrete example, e.g you can talk about how the name, age, and salary of an employee represent his state.