Would like some pointers for Xojo - cross-platform

My company is planning to build a simulation tool for processing (beverage) and we're currently looking at a half-baked system written in Xojo. I had personally never heard of this language and would appreciate it if anyone could give a quick assessment.
We have no in-house Xojo competence at all and are of course reluctant to bring in a system that would require a big investment in know-how for just one system.
So, we're now looking at our options: Port it to a language we're good at (C# or Java) or continue development in Xojo while building internal skills for the language.
So, what are the big pro's and con's with Xojo?
Cheers

Xojo has been around since the late 1990s, then named RealBasic. Its strength lies in its ability to make native looking and behaving apps for many platforms, mainly OS X but also Win and even Linux. The dev community is fairly small, though. But the company managed to stay in business all this time and isn't looking to end it any time soon.
The language is fairly simple and easy to learn, using long known concepts (its design was based on Visual Basic).
Knowing Java, it should be easy to grasp the language. The bigger hurdle is probably getting familiar with its libary. Many things are much simpler to accomplish in Xojo vs Java, though.
Call me lazy, but that's what I like about Xojo. I also program ObjC in Xcode, but for those little tools that just need to work quickly, Xojo is superior for whipping out a program quickly that that has a decent UI and works on many platforms with little to no tweaks.
If you need x-platform support, give it a try, for sure. If you only need the app to run on a single platform, and if you have skills with other dev systems, I'd advise against starting out with Xojo, to avoid the risks you get when going with such a small company that's offering closed-source software.
In your particular case where you have already a half-working solution, I suggest you take a few days to familiarize yourself to get a feeling for it (you can use Xojo for free as long as you don't build standalone apps with it). It's overall fairly stable and I'm still using a 3-year old version most of the time to develop and build my apps. So, even if Xojo should go out of business suddenly, I'd not be too worried. As long as you stick with the simple functionality (e.g. not use unique features such as XojoScript), you can still convert the app to another language later, but there's also a fair chance you never have to.

If you are looking for someone to take a look at your Xojo project I'd recommend posting on the Xojo Find A Developer page at http://www.xojo.com/support/consultants.php where all Pro developers get it. The consultants that want to talk to you about it will then contact you. (Full disclosure: we, BKeeney Software, are on the list and would be happy to help you figure it all out).

Related

How to create an Intelligent Agent

I am currently doing my Honours in Computer Science and taking Artificial Intelligence as a subject. As part of completing the subject I have to develop my own basic intelligent agent.
I have yet to rap my head around what I actually have to do for this project. I am not the most technically gifted programmer and I have no idea of what to do or where to start
Could someone please point me in the right direction as to where to start learning how to develop an Intelligent Agent as well as any possible idea's of what to actually do for a project?
Any VB.net references would be appreciated as well.(I know it's not the best language to develop an IA with, but due to my time constraints this is the programming language I 'feel' most comfortable with)
Thanx in advance
Well, it depends on how you define an agents. For instance a multi-agent simulation (e.g., real time systems with parallel individuals) is inherently different from agent-based modeling (usually a simulation following the discrete time, discrete event paradigms).
From your comments, I think the latter is what you are searching for. In computer science, we have quite a lot of things written already, see the list of available ABM simulation platforms/environments yourself.
I would recommend using Repast (one of the most popular environments, its previous versions also supported VisualBasic what you were searching for), or either NetLogo or Fables (they are both domain-specific languages to do ABM).
To get an overview about ABM, here is a tutorial I wrote about a widely known toy model.

Recommend some open source web frameworks for a fun project

I maintain in-house business software for a living. Technologies included here are Java, Struts, Spring MVC, jsp, wicket, and a few others. I think it's time to branch out and learn something new.
I am hoping to show myself with a side project that writing code can, in fact, be fun (in some plane of the universe), and that I haven't wasted the past few years of my life doing something I can never love or have fun doing.
I'm thinking of having a fantasy-sport style web site - obviously much, much smaller with regards to features and all that. I was hoping I could get some recommendations for the newest or cleanest frameworks that will allow me to accomplish such a project. My goals are to work on following a real development process instead of just hacking a bunch of crap into an already crappy application on a daily basis. Also I will strive to follow best practices and create good, clean, understandable code that I don't shudder at the thought of having to modify. It's hard to do this at work, because the software I work on has already been developed by 50 guys from various continents that never took the time to design anything before jumping into coding.
I would need a simple database to store users and their picks for each event. Also at my job, the login security is all handled by another group completely. Do people usually write their own login systems from scratch, or are there open source utilities for that as well? I'd be interested in those, as my site will need to have a user login system, and be secure.
I had ruby and rails installed on my computer the last time I conjured up the motivation for this idea, but that was nixed by a hard drive crash. I figured before I just jumped straight to rails for this idea, that I would get a few other opinions off stack overflow to see if people liked something else that I didn't know about.
Also, if anyone has any good resources for how to think about OO design, I could brush up on that as well. I'm looking for anything that will help me to just think about the design from the start and how to get my thoughts into a diagram. I'd like it not to focus so much on patterns and other principles as much as just how to get started and actually put my thoughts in a professional document that I can use to build my project from. I tried to practice this prior to a card game that I wrote, and it got way too complicated way too fast, and the results ended up being not so great.
I’m more familiar with Django, although like you, the only frameworks I’ve really used are the Java/Struts/Spring/JSP, etc. The automatically generated administration interface in Django is amazing coming from these, and it comes with its own authentication system too.
Unless you’re especially predisposed against Python, I think you should give it a go.
Ruby on Rails, Python on Django, PHP on (not sure -- maybe Zend? or CakePHP?), are probably the most popular frameworks if I understand correctly that you want to learn a new language. If I misunderstood you, and you'd rather stick with Java, GWT seems pretty cool -- it's the only real way to avoid "explicitly" writing Javascript (if you DO want to learn and use some Javascript, I personally am in love with Dojo, but jQuery is substantially more popular: those are two good popular frameworks you should consider, though there are others of course, like for all languages I mentioned so far).
One advantage of picking Python and Django is that they work particularly well with Google App Engine (and with Dojo, too, thanks to the cool dojango project!) -- GAE supports JVM too, now, but it's supported Python for a much longer time and the Python side of it is more solid and complete at this time. So, if that's the technology stack you choose, you get to develop and deploy for free, on highly scalable infrastructure, at least until your app gets more than a few million page views per month -- and you really minimize your system adminsitration hassles, all you do is basically to code and write one simple configuration file.

How hard is it for a software developer to learn how to program a microcontroller?

I'm a software developer. I've been programming in high level languages for a few years.
I would like to know, how to take my first step into programming hardware. Not something crazy complicated, but maybe some ordinary CE device? Assuming I don't need to put the PCB together with varies components, but just to program the tiny cpu?
How low-level do I have to go? ASM? C? manipulating registers? or are the dev kit quite high level now? Is Java even in the picture? OO coding in hardware, is that even a dream or a reality? Need a reality check.
I also tend to learn better with books or sites that are written in a tutorial format. Something that guides the way for me from something simple to something more complex. Any recommendations? Maybe something that will introduce me to the popular hardware (microprocessor/micro-controller) available today?
Much appreciated, thank you everyone.
The actual programming isn't a big deal. The frustrating, annoying part is getting your development environment setup and getting the tools working. Once you've done that, you're half done.
I'd suggest buying a development kit ('dev kit') that has USB built in and works with your chosen OS. Get that working, and you're halfway done.
If you're missing the knowledge, it's also important to know the basics of how a processor works. You'll be programming at a much lower level than any other programming, so the fundamentals are a bit more important.
If you know C then it's only a matter of learnig the tool chain steps to download the code.
Easy place to start (cheap hardware/software) http://www.arduino.cc/en/Guide/HomePage
I have been coding in C both as a hobby and professionally for about 16 years now, but always for userland code (i.e., programs, not kernel or drivers). Most of my jobs involved high level languages (I have done a lot of Perl and Ruby programming, with the occasional Java, Python and shell scripting in between). I did develop a lot for MS-DOS (which was probably as close to bare-metal programming as you would get on a x86 machine), but my last job involved 5 years of Perl and Ruby on Rails web development.
That being said, I am now a senior engineer for embedded Linux development, developing drivers (including an emulator for a legacy simple microprocessor inside a kernel module) for uClinux on the Blackfin platform. There are times when my inexperience with hardware related issues (i.e., floating signal levels due to lack of a pull-up/pull-down on a pin) did get in the way, but it has been mostly a highly enjoyable and thrilling experience. As stated by others, understanding your tools is essential -- for uClinux, that meant the GNU Toolchain, which fortunately I was already familiar with due to my background on FOSS technologies.
The Blackfin is hardly an entry-level microprocessor (in particular, it does not have a MMU, which has some relevant effects on Linux development), but as already stated, you can buy a Beagleboard for around US$200 with all required accessories and start messing around with it in just a few days. If you want something simpler, there are many Arduino options out there, though if you have some real development experience under your belt I believe you will find their development environment a little limiting (I know I did).
After you get comfortable with your tools you might want to spend some money on an in-circuit emulator (or ICE). These are usually highly platform specific (both in terms of target architecture and development environment), but are highly recommended for anything beyond the usual blink-LEDs-after-button-press examples I am sure you will quickly outgrow.
In few months you will find yourself building custom images for hackable customer devices using Buildroot and having a lot of fun. All I can say is, go for it, it's highly addictive and not particularly expensive to do nowadays.
Also something to look into is the Microsoft Robotics Studio. They support quite a lot of hardware boards (including CE), and with it is is fairly easy to get a small robot up and running. And what's more cool a project to learn embedded programming?
It all integrates nicely in Visual Studio (express) and their devkit also comes with a free express edition.
Get a beagleboard. Cheap, lots of users (community support will be key), many OS options. http://beagleboard.org/
Well, if you want to know what you're doing, you need to understand the assembly language of the processor and the processor's architecture.
You will need to learn C to be competent in microcontrollers. There is no way around that.
There are some VM-level languages on embedded systems. I see the Java out-of-memory exception from time to time on my cell phone(which also helps to give me a strong opinion on VM-level embedded languages).
The ARM has some support for hardware-level Java bytecodes.
Your best bet is to pick up something like the PIC or the Atmel chips and begin hacking with them.
If you want to do it with your existing hardware, get a hypervisor for your PC and begin writing a basic kernel.

Winforms and VB.net without knowing the basics

Can one learn programming in VB.net using Visual Studio (Winforms stuff) and never learn what a console "hello world" looks like or how, in code, to change which part of the program starts at execution (and other basic things like that) and still be a successful VB.net programmer? Or are there roadblocks just waiting there to be hit?
Successful? Probably.
Good? No.
I'm sure you can, but I don't think it's a good idea. You'd probably pick up the core ideas through trial and error - but you may well end up with plenty of misconceptions, and you'll probably waste a lot of time in that trial and error phase.
I'd thoroughly recommend learning core concepts first. Apart from anything else, UI development is full of its own little foibles - if you don't know the core stuff to start with, you won't know whether you've hit a UI gotcha or whether your core knowledge is lacking.
Depends on what you are doing with the programs. If you are just programming little tools for yourself to use, then there is probably no harm. For hobby projects you can know as little as you want. However, if you are programming as a job, you should have a much better grasp at what is going on. You may be able to fake your way through for a while, but eventually somebody is going to ask you to do something that should be simple, but because of your limited knowledge of programming is utterly impossible. Then you will know why you have to know the basics.
That being said, there's a lot of programmers out there in the real world with exactly that level of knowledge who do have jobs. Personally, I think it's a bad idea, but you can't argue with the market. If these people have jobs, there must be a real market need for this type of programmer. Kind of goes along with what Welbog said. You can be successful in that you can hold down a job. But you still won't be a good programmer.
It depends what you mean by success really.
It's entirely possible to write a decent winforms application without writing console apps and without changing the starting form from the default.
When it comes to crafting well written applications in a professional way, you're likely to find requirements that mean using a boot strapper (which will control the initial flow) so at that point you'll definitely need to do some research.

Practices for programming in a scientific environment? [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 5 years ago.
Improve this question
Background
Last year, I did an internship in a physics research group at a university. In this group, we mostly used LabVIEW to write programs for controlling our setups, doing data acquisition and analyzing our data. For the first two purposes, that works quite OK, but for data analysis, it's a real pain. On top of that, everyone was mostly self-taught, so code that was written was generally quite a mess (no wonder that every PhD quickly decided to rewrite everything from scratch). Version control was unknown, and impossible to set up because of strict software and network regulations from the IT department.
Now, things actually worked out surprisingly OK, but how do people in the natural sciences do their software development?
Questions
Some concrete questions:
What languages/environments have you used for developing scientific software, especially data analysis? What libraries? (for example, what do you use for plotting?)
Was there any training for people without any significant background in programming?
Did you have anything like version control, and bug tracking?
How would you go about trying to create a decent environment for programming, without getting too much in the way of the individual scientists (especially physicists are stubborn people!)
Summary of answers thus far
The answers (or my interpretation of them) thus far: (2008-10-11)
Languages/packages that seem to be the most widely used:
LabVIEW
Python
with SciPy, NumPy, PyLab, etc. (See also Brandon's reply for downloads and links)
C/C++
MATLAB
Version control is used by nearly all respondents; bug tracking and other processes are much less common.
The Software Carpentry course is a good way to teach programming and development techniques to scientists.
How to improve things?
Don't force people to follow strict protocols.
Set up an environment yourself, and show the benefits to others. Help them to start working with version control, bug tracking, etc. themselves.
Reviewing other people's code can help, but be aware that not everyone may appreciate that.
What languages/environments have you used for developing scientific software, esp. data analysis? What libraries? (E.g., what do you use for plotting?)
I used to work for Enthought, the primary corporate sponsor of SciPy. We collaborated with scientists from the companies that contracted Enthought for custom software development. Python/SciPy seemed to be a comfortable environment for scientists. It's much less intimidating to get started with than say C++ or Java if you're a scientist without a software background.
The Enthought Python Distribution comes with all the scientific computing libraries including analysis, plotting, 3D visualation, etc.
Was there any training for people without any significant background in programming?
Enthought does offer SciPy training and the SciPy community is pretty good about answering questions on the mailing lists.
Did you have anything like version control, bug tracking?
Yes, and yes (Subversion and Trac). Since we were working collaboratively with the scientists (and typically remotely from them), version control and bug tracking were essential. It took some coaching to get some scientists to internalize the benefits of version control.
How would you go about trying to create a decent environment for programming, without getting too much in the way of the individual scientists (esp. physicists are stubborn people!)
Make sure they are familiarized with the tool chain. It takes an investment up front, but it will make them feel less inclined to reject it in favor of something more familiar (Excel). When the tools fail them (and they will), make sure they have a place to go for help — mailing lists, user groups, other scientists and software developers in the organization. The more help there is to get them back to doing physics the better.
The course Software Carpentry is aimed specifically at people doing scientific computing and aims to teach the basics and lessons of software engineering, and how best to apply them to projects.
It covers topics like version control, debugging, testing, scripting and various other issues.
I've listened to about 8 or 9 of the lectures and think it is to be highly recommended.
Edit: The MP3s of the lectures are available as well.
Nuclear/particle physics here.
Major programing work used to be done mostly in Fortran using CERNLIB (PAW, MINUIT, ...) and GEANT3, recently it has mostly been done in C++ with ROOT and Geant4. There are a number of other libraries and tools in specialized use, and LabVIEW sees some use here and there.
Data acquisition in my end of this business has often meant fairly low level work. Often in C, sometimes even in assembly, but this is dying out as the hardware gets more capable. On the other hand, many of the boards are now built with FPGAs which need gate twiddling...
One-offs, graphical interfaces, etc. use almost anything (Tcl/Tk used to be big, and I've been seeing more Perl/Tk and Python/Tk lately) including a number of packages that exist mostly inside the particle physics community.
Many people writing code have little or no formal training, and process is transmitted very unevenly by oral tradition, but most of the software group leaders take process seriously and read as much as necessary to make up their deficiencies in this area.
Version control for the main tools is ubiquitous. But many individual programmers neglect it for their smaller tasks. Formal bug tracking tools are less common, as are nightly builds, unit testing, and regression tests.
To improve things:
Get on the good side of the local software leaders
Implement the process you want to use in your own area, and encourage those you let in to use it too.
Wait. Physicists are empirical people. If it helps, they will (eventually!) notice.
One more suggestion for improving things.
Put a little time in to helping anyone you work directly with. Review their code. Tell them about algorithmic complexity/code generation/DRY or whatever basic thing they never learned because some professor threw a Fortran book at them once and said "make it work". Indoctrinate them on process issues. They are smart people, and they will learn if you give them a chance.
This might be slightly tangential, but hopefully relevant.
I used to work for National Instruments, R&D, where I wrote software for NI RF & Communication toolkits. We used LabVIEW quite a bit, and here are the practices we followed:
Source control. NI uses Perforce. We did the regular thing - dev/trunk branches, continuous integration, the works.
We wrote automated test suites.
We had a few people who came in with a background in signal processing and communication. We used to have regular code reviews, and best practices documents to make sure their code was up to the mark.
Despite the code reviews, there were a few occasions when "software guys", like me had to rewrite some of this code for efficiency.
I know exactly what you mean about stubborn people! We had folks who used to think that pointing out a potential performance improvement in their code was a direct personal insult! It goes without saying that that this calls for good management. I thought the best way to deal with these folks is to go slowly, not press to hard for changes and if necessary be prepared to do the dirty work. [Example: write a test suite for their code].
I'm not exactly a 'natural' scientist (I study transportation) but am an academic who writes a lot of my own software for data analysis. I try to write as much as I can in Python, but sometimes I'm forced to use other languages when I'm working on extending or customizing an existing software tool. There is very little programming training in my field. Most folks are either self-taught, or learned their programming skills from classes taken previously or outside the discipline.
I'm a big fan of version control. I used Vault running on my home server for all the code for my dissertation. Right now I'm trying to get the department to set up a Subversion server, but my guess is I will be the only one who uses it, at least at first. I've played around a bit with FogBugs, but unlike version control, I don't think that's nearly as useful for a one-man team.
As for encouraging others to use version control and the like, that's really the problem I'm facing now. I'm planning on forcing my grad students to use it on research projects they're doing for me, and encouraging them to use it for their own research. If I teach a class involving programming, I'll probably force the students to use version control there too (grading them on what's in the repository). As far as my colleagues and their grad students go, all I can really do is make a server available and rely on gentle persuasion and setting a good example. Frankly, at this point I think it's more important to get them doing regular backups than get them on source control (some folks are carrying around the only copy of their research data on USB flash drives).
1.) Scripting languages are popular these days for most things due to better hardware. Perl/Python/Lisp are prevalent for lightweight applications (automation, light computation); I see a lot of Perl at my work (computational EM) since we like Unix/Linux. For performance stuff, C/C++/Fortran are typically used. For parallel computing, well, we usually manually parallelize runs in EM as opposed to having a program implicitly do it (ie split up the jobs by look angle when computing radar cross sections).
2.) We just kind of throw people into the mix here. A lot of the code we have is very messy, but scientists are typically a scatterbrained bunch that don't mind that sort of thing. Not ideal, but we have things to deliver and we're severely understaffed. We're slowly getting better.
3.) We use SVN; however, we do not have bug tracking software. About as good as it gets for us is a txt file that tells you where bugs specific bugs are.
4.) My suggestion for implementing best practices for scientists: do it slowly. As scientists, we typically don't ship products. No one in science makes a name for himself by having clean, maintainable code. They get recognition from the results of that code, typically. They need to see justification for spending time on learning software practices. Slowly introduce new concepts and try to get them to follow; they're scientists, so after their own empirical evidence confirms the usefulness of things like version control, they will begin to use it all the time!
I'd highly recommend reading "What Every Computer Scientist Should Know About Floating-Point Arithmetic". A lot of problems I encounter on a regular basis come from issues with floating point programming.
I am a physicist working in the field of condensed matter physics, building classical and quantum models.
Languages:
C++ -- very versatile: can be used for anything, good speed, but it can be a bit inconvenient when it comes to MPI
Octave -- good for some supplementary calculations, very convenient and productive
Libraries:
Armadillo/Blitz++ -- fast array/matrix/cube abstractions for C++
Eigen/Armadillo -- linear algebra
GSL -- to use with C
LAPACK/BLAS/ATLAS -- extremely big and fast, but less convenient (and written in FORTRAN)
Graphics:
GNUPlot -- it has very clean and neat output, but not that productive sometimes
Origin -- very convenient for plotting
Development tools:
Vim + plugins -- it works great for me
GDB -- a great debugging tool when working with C/C++
Code::Blocks -- I used it for some time and found it quite comfortable, but Vim is still better in my opinion.
I work as a physicist in a UK university.
Perhaps I should emphasise that different areas of research have different emphasis on programming. Particle physicists (like dmckee) do computational modelling almost exclusively and may collaborate on large software projects, whereas people in fields like my own (condensed matter) write code relatively infrequently. I suspect most scientists fall into the latter camp. I would say coding skills are usually seen as useful in physics, but not essential, much like physics/maths skills are seen as useful for programmers but not essential. With this in mind...
What languages/environments have you used for developing scientific software, esp. data analysis? What libraries? (E.g., what do you use for plotting?)
Commonly data analysis and plotting is done using generic data analysis packages such as IGOR Pro, ORIGIN, Kaleidegraph which can be thought of as 'Excel plus'. These packages typically have a scripting language that can be used to automate. More specialist analysis may have a dedicated utility for the job that generally will have been written a long time ago, no-one has the source for and is pretty buggy. Some more techie types might use the languages that have been mentioned (Python, R, MatLab with Gnuplot for plotting).
Control software is commonly done in LabVIEW, although we actually use Delphi which is somewhat unusual.
Was there any training for people without any significant background in programming?
I've been to seminars on grid computing, 3D visualisation, learning Boost etc. given by both universities I've been at. As an undergraduate we were taught VBA for Excel and MatLab but C/MatLab/LabVIEW is more common.
Did you have anything like version control, bug tracking?
No, although people do have personal development setups. Our code base is in a shared folder on a 'server' which is kept current with a synching tool.
How would you go about trying to create a decent environment for programming, without getting too much in the way of the individual scientists (esp. physicists are stubborn people!)
One step at a time! I am trying to replace the shared folder with something a bit more solid, perhaps finding a SVN client which mimics the current synching tools behaviour would help.
I'd say though on the whole, for most natural science projects, time is generally better spent doing research!
Ex-academic physicist and now industrial physicist UK here:
What languages/environments have you used for developing scientific software, esp. data analysis? What libraries? (E.g., what do you use for plotting?)
I mainly use MATLAB these days (easy to access visualisation functions and maths). I used to use Fortran a lot and IDL. I have used C (but I'm more a reader than a writer of C), Excel macros (ugly and confusing). I'm currently needing to be able to read Java and C++ (but I can't really program in them) and I've hacked Python as well. For my own entertainment I'm now doing some programming in C# (mainly to get portability / low cost / pretty interfaces). I can write Fortran with pretty much any language I'm presented with ;-)
Was there any training for people without any significant background in programming?
Most (all?) undergraduate physics course will have a small programming course usually on C, Fortran or MATLAB but it's the real basics. I'd really like to have had some training in software engineering at some point (revision control / testing / designing medium scale systems)
Did you have anything like version control, bug tracking?
I started using Subversion / TortoiseSVN relatively recently. Groups I've worked with in the past have used revision control. I don't know any academic group which uses formal bug tracking software. I still don't use any sort of systematic testing.
How would you go about trying to create a decent environment for programming, without getting too much in the way of the individual scientists (esp. physicists are stubborn people!)
I would try to introduce some software engineering ideas at undergraduate level and then reinforce them by practice at graduate level, also provide pointers to resources like the Software Carpentry course mentioned above.
I'd expect that a significant fraction of academic physicists will be writing software (not necessarily all though) and they are in dire need of at least an introduction to ideas in software engineering.
What languages/environments have you used for developing scientific software, esp. data analysis? What libraries? (E.g., what do you use for plotting?)
Python, NumPy and pylab (plotting).
Was there any training for people without any significant background in programming?
No, but I was working in a multimedia research lab, so almost everybody had a computer science background.
Did you have anything like version control, bug tracking?
Yes, Subversion for version control, Trac for bug tracing and wiki. You can get free bug tracker/version control hosting from http://www.assembla.com/ if their TOS fits your project.
How would you go about trying to create a decent environment for programming, without getting too much in the way of the individual scientists (esp. physicists are stubborn people!).
Make sure the infrastructure is set up and well maintained and try to sell the benefits of source control.
I'm a statistician at a university in the UK. Generally people here use R for data analysis, it's fairly easy to learn if you know C/Perl. Its real power is in the way you can import and modify data interactively. It's very easy to take a number of say CSV (or Excel) files and merge them, create new columns based on others and then throw that into a GLM, GAM or some other model. Plotting is trivial too and doesn't require knowledge of a whole new language (like PGPLOT or GNUPLOT.) Of course, you also have the advantage of having a bunch of built-in features (from simple things like mean, standard deviation etc all the way to neural networks, splines and GL plotting.)
Having said this, there are a couple of issues. With very large datasets R can become very slow (I've only really seen this with >50,000x30 datasets) and since it's interpreted you don't get the advantage of Fortran/C in this respect. But, you can (very easily) get R to call C and Fortran shared libraries (either from something like netlib or ones you've written yourself.) So, a usual workflow would be to:
Work out what to do.
Prototype the code in R.
Run some preliminary analyses.
Re-write the slow code into C or Fortran and call that from R.
Which works very well for me.
I'm one of the only people in my department (of >100 people) using version control (in my case using git with githuib.com.) This is rather worrying, but they just don't seem to be keen on trying it out and are content with passing zip files around (yuck.)
My suggestion would be to continue using LabView for the acquisition (and perhaps trying to get your co-workers to agree on a toolset for acquisition and making is available for all) and then move to exporting the data into a CSV (or similar) and doing the analysis in R. There's really very little point in re-inventing the wheel in this respect.
What languages/environments have you used for developing scientific software, esp. data analysis? What libraries? (E.g., what do you use for plotting?)
My undergraduate physics department taught LabVIEW classes and used it extensively in its research projects.
The other alternative is MATLAB, in which I have no experience. There are camps for either product; each has its own advantages/disadvantages. Depending on what kind of problems you need to solve, one package may be more preferable than the other.
Regarding data analysis, you can use whatever kind of number cruncher you want. Ideally, you can do the hard calculations in language X and format the output to plot nicely in Excel, Mathcad, Mathematica, or whatever the flavor du jour plotting system is. Don't expect standardization here.
Did you have anything like version control, bug tracking?
Looking back, we didn't, and it would have been easier for us all if we did. Nothing like breaking everything and struggling for hours to fix it!
Definitely use source control for any common code. Encourage individuals to write their code in a manner that could be made more generic. This is really just coding best practices. Really, you should have them teaching (or taking) a computer science class so they can get the basics.
How would you go about trying to create a decent environment for programming, without getting too much in the way of the individual scientists (esp. physicists are stubborn people!)
There is a clear split between data aquisition (DAQ) and data analysis. Meaning, it's possible to standardize on the DAQ and then allow the scientists to play with the data in the program of their choice.
Another good option is Scilab. It has graphic modules à la LabVIEW, it has its own programming language and you can also embed Fortran and C code, for example. It's being used in public and private sectors, including big industrial companies. And it's free.
About versioning, some prefer Mercurial, as it gives more liberties managing and defining the repositories. I have no experience with it, however.
For plotting I use Matplotlib. I will soon have to make animations, and I've seen good results using MEncoder. Here is an example including an audio track.
Finally, I suggest going modular, this is, trying to keep main pieces of code in different files, so code revision, understanding, maintenance and improvement will be easier. I have written, for example, a Python module for file integrity testing, another for image processing sequences, etc.
You should also consider developing with the use a debugger that allows you to check variable contents at settable breakpoints in the code, instead using print lines.
I have used Eclipse for Python and Fortran developing (although I got a false bug compiling a Fortran short program with it, but it may have been a bad configuration) and I'm starting to use the Eric IDE for Python. It allows you to debug, manage versioning with SVN, it has an embedded console, it can do refactoring with Bicycle Repair Man (it can use another one, too), you have Unittest, etc. A lighter alternative for Python is IDLE, included with Python since version 2.3.
As a few hints, I also suggest:
Not using single-character variables. When you want to search appearances, you will get results everywhere. Some argue that a decent IDE makes this easier, but then you will depend on having permanent access to the IDE. Even using ii, jj and kk can be enough, although this choice will depend on your language. (Double vowels would be less useful if code comments are made in Estonian, for instance).
Commenting the code from the very beginning.
For critical applications sometimes it's better to rely on older language/compiler versions (major releases), more stable and better debugged.
Of course you can have more optimized code in later versions, fixed bugs, etc, but I'm talking about using Fortran 95 instead of 2003, Python 2.5.4 instead of 3.0, or so. (Specially when a new version breaks backwards compatibility.) Lots of improvements usually introduce lots of bugs. Still, this will depend on specific application cases!
Note that this is a personal choice, many people could argue against this.
Use redundant and automated backup! (With versioning control).
Definitely, use Subversion to keep current, work-in-progress, and stable snapshot copies of source code. This includes C++, Java etc. for homegrown software tools, and quickie scripts for one-off processing.
With the strong leaning in science and applied engineering toward "lone cowboy" development methodology, the usual practice of organizing the repository into trunk, tag and whatever else it was - don't bother! Scientists and their lab technicians like to twirl knobs, wiggle electrodes and chase vacuum leaks. It's enough of a job to get everyone to agree to, say Python/NumPy or follow some naming convention; forget trying to make them follow arcane software developer practices and conventions.
For source code management, centralized systems such as Subversion are superior for scientific use due to the clear single point of truth (SPOT). Logging of changes and ability to recall versions of any file, without having chase down where to find something, has huge record-keeping advantages. Tools like Git and Monotone: oh my gosh the chaos I can imagine that would follow! Having clear-cut records of just what version of hack-job scripts were used while toying with the new sensor when that Higgs boson went by or that supernova blew up, will lead to happiness.
What languages/environments have you
used for developing scientific
software, esp. data analysis? What
libraries? (E.g., what do you use for
plotting?)
Languages I have used for numerics and sicentific-related stuff:
C (slow development, too much debugging, almost impossible to write reusable code)
C++ (and I learned to hate it -- development isn't as slow as C, but can be a pain. Templates and classes were cool initially, but after a while I realized that I was fighting them all the time and finding workarounds for language design problems
Common Lisp, which was OK, but not widely used fo Sci computing. Not easy to integrate with C (if compared to other languages), but works
Scheme. This one became my personal choice.
My editor is Emacs, although I do use vim for quick stuff like editing configuration files.
For plotting, I usually generate a text file and feed it into gnuplot.
For data analysis, I usually generate a text file and use GNU R.
I see lots of people here using FORTRAN (mostly 77, but some 90), lots of Java and some Python. I don't like those, so I don't use them.
Was there any training for people
without any significant background in
programming?
I think this doesn't apply to me, since I graduated in CS -- but where I work there is no formal training, but people (Engineers, Physicists, Mathematicians) do help each other.
Did you have anything like version
control, bug tracking?
Version control is absolutely important! I keep my code and data in three different machines, in two different sides of the world -- in Git repositories. I sync them all the time (so I have version control and backups!) I don't do bug control, although I may start doing that.
But my colleagues don't BTS or VCS at all.
How would you go about trying to
create a decent environment for
programming, without getting too much
in the way of the individual
scientists (esp. physicists are
stubborn people!)
First, I'd give them as much freedom as possible. (In the University where I work I could chooe between having someone install Ubuntu or Windows, or install my own OS -- I chose to install my own. I don't have support from them and I'm responsible for anything that happens with my machins, including security issues, but I do whatever I want with the machine).
Second, I'd see what they are used to, and make it work (need FORTRAN? We'll set it up. Need C++? No problem. Mathematica? OK, we'll buy a license). Then see how many of them would like to learn "additional tools" to help them be more productive (don't say "different" tools. Say "additional", so it won't seem like anyone will "lose" or "let go" or whatever). Start with editors, see if there are groups who would like to use VCS to sync their work (hey, you can stay home and send your code through SVN or GIT -- wouldn't that be great?) and so on.
Don't impose -- show examples of how cool these tools are. Make data analysis using R, and show them how easy it was. Show nice graphics, and explain how you've created them (but start with simple examples, so you can quickly explain them).
I would suggest F# as a potential candidate for performing science-related manipulations given its strong semantic ties to mathematical constructs.
Also, its support for units-of-measure, as written about here makes a lot of sense for ensuring proper translation between mathematical model and implementation source code.
First of all, I would definitely go with a scripting language to avoid having to explain a lot of extra things (for example manual memory management is - mostly - ok if you are writing low-level, performance sensitive stuff, but for somebody who just wants to use a computer as an upgraded scientific calculator it's definitely overkill). Also, look around if there is something specific for your domain (as is R for statistics). This has the advantage of already working with the concepts the users are familiar with and having specialized code for specific situations (for example calculating standard deviations, applying statistical tests, etc in the case of R).
If you wish to use a more generic scripting language, I would go with Python. Two things it has going for it are:
The interactive shell where you can experiment
Its clear (although sometimes lengthy) syntax
As an added advantage, it has libraries for most of the things you would want to do with it.
I'm no expert in this area, but I've always understood that this is what MATLAB was created for. There is a way to integrate MATLAB with SVN for source control as well.