Eigen Value Solver for Graph - eigenvalue

Say I have a graph with 10 million nodes and 100 million edges. I would like to compute the largest Eigen value on the adjacency matrix of this graph. Which Eigen value solvers should work for the graph this big. Note that the matrix is sparse.

You can use Arpack [1], it requires just a function that computes a matrix-vector product (thus it works well for sparse matrices).
Arpack has different operating modes, for computing either the high frequencies (small eigenvalues) or the low frequencies (large eigenvalues). Unfortunately, it works in general much faster for the high frequencies, but what you can do is pre-factoring your matrix using a sparse LU factorization algorithm, e.g., SuperLU [2], then compute the high frequencies of M^-1, by solving a linear system instead of computing the sparse matrix vector product, then the eigenvalue is just the inverse of the one computed by Arpack.
I tryed that with meshes with tenths of million nodes, and it works quite well. Details are in my article [3] and companion source-code [4]
References:
[1] http://www.caam.rice.edu/software/ARPACK/
[2] http://crd-legacy.lbl.gov/~xiaoye/SuperLU/
[3] http://alice.loria.fr/index.php/publications.html?redirect=0&Paper=ManifoldHarmonics#2007
[4] http://alice.loria.fr/WIKI/index.php/Graphite/ManifoldHarmonics

Related

Does variational autoencoder make distribution based on only latent representation?

If my latent representation of variational autoencoder(VAE) is r, and my dataset is x, does vae's latent representation follows normalization based on r or x?
If r= 10, that means it has 10 means and variance (multi-gussain) and distribution comes from data whole data x?
Or r = 10 constructs one distribution based on r, and every sample try to follow this distribution
I'm confused about which one is correct
VAE constructs a mapping e(x) -> Z (encoder), and d(z) -> X (decoder). This means that every elements of your input space x will be mapped through an encoder e(x) into a single, r-dimensional Gaussian. It is not a "mixture", it is just a single gaussian with diagonal covariance matrix.
I'll add my 2 cents to #lejlot answer.
Your encoder in VAE will map your sample to a distribution, that in your case has 10 dimensions... that distribution is used to say "ok my best estimate of this property of this sample is mu, but I'm not too sure, so consider that it might have variance sigma"
Therefore, you have a distribution for each sample.
However, in order to make sampling easier in VAE, we ask the VAE to keep the distributions as close to a known one, that is the standard normal distribution (we know "where the distributions are located", if you check the latent space in a normal AE you will see that you will have groups far from eachother).

Explained variance calculation

My questions are specific to https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA.
I don't understand why you square eigenvalues
https://github.com/scikit-learn/scikit-learn/blob/55bf5d9/sklearn/decomposition/pca.py#L444
here?
Also, explained_variance is not computed for new transformed data other than original data used to compute eigen-vectors. Is that not normally done?
pca = PCA(n_components=2, svd_solver='full')
pca.fit(X)
pca.transform(Y)
In this case, won't you separately calculate explained variance for data Y as well. For that purpose, I think we would have to use point 3 instead of using eigen-values.
Explained variance can be also computed by taking the variance of each axis in the transformed space and dividing by the total variance. Any reason that is not done here?
Answers to your questions:
1) The square roots of the eigenvalues of the scatter matrix (e.g. XX.T) are the singular values of X (see here: https://math.stackexchange.com/a/3871/536826). So you square them. Important: the initial matrix X should be centered (data has been preprocessed to have zero mean) in order for the above to hold.
2) Yes this is the way to go. explained_variance is computed based on the singular values. See point 1.
3) It's the same but in the case you describe you HAVE to project the data and then do additional computations. No need for that if you just compute it using the eigenvalues / singular values (see point 1 again for the connection between these two).
Finally, keep in mind that not everyone really wants to project the data. Someone can only get the eigenvalues and then immediately estimate the explained variance WITHOUT projecting the data. So that's the best gold standard way to do it.
EDIT 1:
Answer to edited Point 2
No. PCA is an unsupervised method. It only transforms the X data not the Y (labels).
Again, the explained variance can be computed fast, easily, and with half line of code using the eigenvalues/singular values OR as you said using the projected data e.g. estimating the covariance of the projected data, then variances of PCs will be in the diagonal.

How tensorflow deals with large Variables which can not be stored in one box

I want to train a DNN model by training data with more than one billion feature dimensions. So the shape of the first layer weight matrix will be (1,000,000,000, 512). this weight matrix is too large to be stored in one box.
By now, is there any solution to deal with such large variables, for example partition the large weight matrix to multiple boxes.
Update:
Thanks Olivier and Keveman. let me add more detail about my problem.
The example is very sparse and all features are binary value: 0 or 1. The parameter weight looks like tf.Variable(tf.truncated_normal([1 000 000 000, 512],stddev=0.1))
The solutions kaveman gave seem reasonable, and I will update results after trying.
The answer to this question depends greatly on what operations you want to perform on the weight matrix.
The typical way to handle such a large number of features is to treat the 512 vector per feature as an embedding. If each of your example in the data set has only one of the 1 billion features, then you can use the tf.nn.embedding_lookup function to lookup the embeddings for the features present in a mini-batch of examples. If each example has more than one feature, but presumably only a handful of them, then you can use the tf.nn.embedding_lookup_sparse to lookup the embeddings.
In both these cases, your weight matrix can be distributed across many machines. That is, the params argument to both of these functions is a list of tensors. You would shard your large weight matrix and locate the shards in different machines. Please look at tf.device and the primer on distributed execution to understand how data and computation can be distributed across many machines.
If you really want to do some dense operation on the weight matrix, say, multiply the matrix with another matrix, that is still conceivable, although there are no ready-made recipes in TensorFlow to handle that. You would still shard your weight matrix across machines. But then, you have to manually construct a sequence of matrix multiplies on the distributed blocks of your weight matrix, and combine the results.

Is there any obvious reason that Tensorflow uses COO format other than CSR for sparse matrix?

I'm trying to take performance advantages from built-in Sparse Matrix Multiplication API of Tensorflow.
And keveman recommended that tf.embedding_lookup_sparse is the right way.
But, it seems that the performance of embedding_lookup_sparse is somewhat disappointed in my experiments. Though it performs fairly small matrix multiplications, <1, 3196> and <3196, 1024>, sparse matmul with 0.1 sparsity fails to win the dense matrix multiplication.
If my implementation is correct, I think one of the reasons is that Tensorflow uses COO format which saves all index-nonzero pair. I'm not an expert on this domain but, isn't it widely known that CSR format is more performant on this kind of computation? Is there any obvious reason that Tensorflow internally uses COO format other than CSR for sparse matrix representation?
Just for the record, you say matrix multiplication, but one of your matrices is in fact a vector (1 x 3196). So this would make it a matrix-vector multiplication (different BLAS kernel). I will assume you mean matrix-vector multiplication for my answer.
Yes, CSR should theoretically be faster than COO for matrix-vector multiplication; this is because the storage size in CSR format is O(2nnz + n) vs O(3nnzs) and the sparse matrix vector multiplication is in many cases memory bound.
The exact performance difference compared to a dense matrix multiplication varies though based on the problem size, sparsity pattern, data type and implementation. It is difficult to say off the bat which should be faster, because the sparse storage format introduces indirection, which potentially leads to reduced locality and poor(er) utilisation of arithmetic units (e.g. no use of vectorisation).
Particularly when the matrix and vector size are so small that almost everything fits in cache, I would expect limited performance benefits. Sparse matrix structures are typically more useful for truly large matrices, ranging from 10sK x 10sK to 1B x 1B, which wouldn't even fit in main memory using a dense representation. For small problem sizes, in my experience, the storage advantage compared to dense formats is usually negated by the loss in locality and arithmetic efficiency. To some extent this is addressed by hybrid storage formats (such as Block CSR) which try to take the best of both worlds, and are very useful for some applications (doesn't look like tensorflow supports this).
In tensorflow, I would assume the COO format is used because it is more efficient for other operations, for example it supports O(1) updates, insertions and deletions from the data structure. It seems reasonable to trade ~50% performance in sparse matrix-vector multiply to improve performance on these operations.

What are the downsides of convolution by FFT compared to realspace convolution?

So I am aware that a convolution by FFT has a lower computational complexity than a convolution in real space. But what are the downsides of an FFT convolution?
Does the kernel size always have to match the image size, or are there functions that take care of this, for example in pythons numpy and scipy packages? And what about anti-aliasing effects?
FFT convolutions are based on the convolution theorem, which states that given two functions f and g, if Fd() and Fi() denote the direct and inverse Fourier transform, and * and . convolution and multiplication, then:
f*g = Fi(Fd(d).Fd(g))
To apply this to a signal f and a kernel g, there are some things you need to take care of:
f and g have to be of the same size for the multiplication step to be possible, so you need to zero-pad the kernel (or input, if the kernel is longer than it).
When doing a DFT, which is what FFT does, the resulting frequency domain representation of the function is periodic. This means that, by default, your kernel wraps around the edge when doing the convolution. If you want this, then all is great. But if not, you have to add an extra zero-padding the size of the kernel to avoid it.
Most (all?) FFT packages only work well (performance-wise) with sizes that do not have any large prime factors. Rounding the signal and kernel size up to the next power of two is a common practice that may result in a (very) significant speed-up.
If your signal and kernel sizes are f_l and g_l, doing a straightforward convolution in time domain requires g_l * (f_l - g_l + 1) multiplications and (g_l - 1) * (f_l - g_l + 1) additions.
For the FFT approach, you have to do 3 FFTs of size at least f_l + g_l, as well as f_l + g_l multiplications.
For large sizes of both f and g, the FFT is clearly superior with its n*log(n) complexity. For small kernels, the direct approach may be faster.
scipy.signal has both convolve and fftconvolve methods for you to play around. And fftconvolve handles all the padding described above transparently for you.
While fast convolution has better "big O" complexity than direct form convolution; there are a few drawbacks or caveats. I did some thinking about this topic for an article I wrote a while back.
Better "big O" complexity is not always better. Direct form convolution can be faster than using FFTs for filters smaller than a certain size. The exact size depends on the platform and implementations used. The crossover point is usually in the 10-40 coefficient range.
Latency. Fast convolution is inherently a blockwise algorithm. Queueing up hundreds or thousands of samples at a time before transforming them may be unacceptable for some real-time applications.
Implementation complexity. Direct form is simpler in terms of the memory, code space and in the theoretical background of the writer/maintainer.
On a fixed point DSP platform (not a general purpose CPU): the limited word size considerations of fixed-point FFT make large fixed point FFTs nearly useless. At the other end of the size spectrum, these chips have specialized MAC intstructions that are well designed for performing direct form FIR computation, increasing the range over which te O(N^2) direct form is faster than O(NlogN). These factors tend to create a limited "sweet spot" where fixed point FFTs are useful for Fast Convolution.