recoding multiple variables in the same way - variables

I am looking for the shortest way to recode many variables in the same way.
For example I have data frame where columns a,b,c are names of items of survey and rows are observations.
d <- data.frame(a=c(1,2,3), b=c(1,3,2), c=c(1,2,1))
I want to change values of all observations for selected columns. For instance value 1 of column "a" and "c" should be replaced to string "low" and values 2,3 of these columns should be replaced to "high".
I do it often with many columns so I am looking for function which can do it in very simple way, like this:
recode2(data=d, columns=a,d, "1=low, 2,3=high").
Almost ok is function recode from package cars, but if I have 10 columns to recode I have to rewrite it 10 times and it is not as effective as I want.

Related

Subtract the mean of a group for a column away from a column value

I have a companies dataset with 35 columns. The companies can belong to one of 8 different groups. How do I for each group create a new dataframe which subtract the mean of the column for that group away from the original value?
Here is an example of part of the dataset.
So for example for row 1 I want to subtract the mean of BANK_AND_DEP for Consumer Markets away from the value of 7204.400207. I need to do this for each column.
I assume this is some kind of combination of a transform and a lambda - but cannot hit the syntax.
Although it might seem counter-intuitive for this to involve a loop at all, looping through the columns themselves allows you to do this as a vectorized operation, which will be quicker than .apply(). For what to subtract by, you'll combine .groupby() and .transform() to get the value you need to subtract from a column. Then, just subtract it.
for column in df.columns:
df['new_'+column] = df[column]-df.groupby('Cluster')['column'].transform('mean')

Looping though jagged array while fixing some dimentions in vb.net

I have a 7 dimensional jagged array that essentially is just a collection of decimal numbers. I need to go through the array and add up all the decimals that have certain values in certain columns. For example;
(A)(B)(..)(..)(..)(..)(..)
Where .. is the entire size of the dimention. For the above case I can simply use a bunch of nested for loops because I know that A and B are at the start of the array. But how can I deal with this if the dimention in which A and B are located is randomised. Eg.
(..)(A)(..)(..)(B)(..)(..)
Or
(..)(..)(..)(..)(..)(A)(B)
Or
(..)(..)(A)(..)(..)(..)(B)
Etc.
I thought about have a select case for the locations of A and B but this leads to hundreds (if not thousands) of lines of repeated code, and it feels like bad practice.
Any suggestions?
Edit #1
This is difficult to explain so I'm going to use a much more simple example. Instead of 7 dimentions let's say it's 2 dimentions (each with a length of 4). And instead of A and B let's say it's just A. I wish to add the following elements:
(A)(0)
(A)(1)
(A)(2)
(A)(3)
(0)(A)
(1)(A)
(2)(A)
(3)(A)
As you can see this is every element where A is in either of the dimentions (A is a real number, in this case either 0, 1, 2, or 3). Now in my case there's the need for both A and B to be in one of the dimentions and the requirement that A is always before B. But since there's 7 dimentions there's so many possible locations of A and B that writing code to each scenario is not ideal (also I'd like to extend it to C, D, etc.)

Performing calculations on multiple columns in dataframe and create new columns

I'm trying to perform calculations based on the entries in a pandas dataframe. The dataframe looks something like this:
and it contains 1466 rows. I'll have to run similar calculations on other dfs with more rows later.
What I'm trying to do, is calculate something like mag='(U-V)/('R-I)' (but ignoring any values that are -999), put that in a new column, and then z_pred=10**((mag-c)m) in a new column (mag, c and m are just hard-coded variables). I have other columns I need to add too, but I figure that'll just be an extension of the same method.
I started out by trying
for i in range(1):
current = qso[:]
mag = (U-V)/(R-I)
name = current['NED']
z_pred = 10**((mag - c)/m)
z_meas = current['z']
but I got either a Series for z, which I couldn't operate on, or various type errors when I tried to print the values or write them to a file.
I found this question which gave me a start, but I can't see how to apply it to multiple calculations, as in my situation.
How can I achieve this?
Conditionally adding calculated columns row wise are usually performed with numpy's np.where;
df['mag'] = np.where(~df[['U', 'V', 'R', 'I']].eq(-999).any(1), (df.U - df.V) / (df.R - df.I), -999)
Note; assuming here that when any of the columns contain '-999' it will not be calculated and a '-999' is returned.

Add values from a column when two other columns match

I have an ecology data table with about 12,000 rows. There are three columns: site, species, and value. I need to add up the values for each set of matching site and species - for example, all "red maple" values at "site A". I have the data sorted by site and species, so I can do it by hand, but it's slow going. The number of site/species matches varies, so I can't just add up the values in sets of three or anything.
Similar types of questions have talked about pivot tables, but none have needed to match two columns and add a third column, and I haven't been able to figure out how to extrapolate to my situation.
I'm reasonably comfortable coding and would like to do something that looks like this pseudocode, but I'm not clear on the syntax in VBA:
For each row
if a(x) = a(x+1) and b(x) = b(x+1) then
sum = sum + c(x)
else
d(x) = sum
sum = 0
next
Any ideas?
In a PivotTable, put site in Row Labels and species in Column Labels (or vice versa) and Sum of value in Σ Values:

How to access columns by their names and not by their positions?

I have just tried my first sqlite select-statement and got a result (an iterator over tuples). So, in other words, every row is represented by a tuple and I can access value in the cells of the row like this: r[7] or r[3] (get value from the column 7 or column 3). But I would like to access columns not by their positions but by their names. Let us say, I would like to know the value in the column user_name. What is the way to do it?
I found the answer on my question here:
cursor.execute("PRAGMA table_info(tablename)")
print cursor.fetchall()