Running tests after an asynchronous setUp method is finished - objective-c

I have a XCTTestClass that has an asynchronous setup method. It will take some amount of time (has to parse files, insert them in a bd, etc) and I want to make sure my tests only run after this setup is done.
How can I do this?

You can use semaphores to wait till you get the results back from your async call.
dispatch_semaphore_t semaphore = dispatch_semaphore_create(0);
// Do your async call here
// Once you get the response back signal:
[self asyncCallWithCompletionBlock:^(id result) {
dispatch_semaphore_signal(semaphore);
}];
dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);

In your -setup method use either a semaphore as above or use dispatch_group. dispatch_group is my preferred approach.
#implementation XCTTestSubClass()
{
dispatch_group_t _dispatchGroup;
}
#end
-(id)init
{
_dispatchGroup = dispatch_group_create();
return [super init];
}
-(void)setup
{
dispatch_group_async(_dispatchGroup, dispatch_get_current_queue(), ^{
//your setup code here.
});
}
Then override -invokeTest and make sure the group blocks(setup) is done running.
-(void)invokeTest
{
dispatch_group_notify(group, dispatch_get_current_queue(), ^{
[super invokeTest];
});
}
This guarantees that the tests will run only after -setup is completed.

Related

Objective-c: How to make multiple async service calls and block until they are all complete

I have a senario that requires me to make multiple call to a web api. The following is an example.
getDataAsync:(NSDictionary *)dictionary withCompletion: (void (^)(NSDictionary*))completion {
__block int counter = n; // the number of async blocks
__block NSMutableDictionary *output = [[NSMutableDictionary alloc] init];
void (^returnBlock)(void) = ^{
counter--;
if(counter != 0) return;
completion(#{#"return": output});
return;
};
void (^getResourceA)(void) = ^{
[service getResourceA : dictionary[#"idA"] completion:
^(ServiceResult results, MyResourceA *a, NSString *errMsg) {
[output setValue:a.value forKey:a.name];
returnBlock();
}];
};
// followed by n-1 other blocks like getResourceA
//...
}
I want to use the built in dispatch_queue rather than my own custom solution here. How can I do that given the inner completion block used by the asynchronous service call?
Also any other advice on how to go about this would be appreciated.
Dispatch groups have been invented for this purpose:
dispatch_group_t requestGroup = dispatch_group_create();
dispatch_group_async(requestGroup, queue, ^{
// ...
});
dispatch_group_wait(requestGroup, DISPATCH_TIME_FOREVER);
completionBlock();
Or instead of waiting:
dispatch_group_notify(requestGroup, dispatch_get_main_queue(), ^{
completionBlock();
});
Also, instead of dispatching blocks to the group, you can also enter and leave a group manually, which works well with asynchronous service APIs:
dispatch_group_enter(requestGroup);
[service getResourceA : dictionary[#"idA"] completion: ^(ServiceResult results, MyResourceA *a, NSString *errMsg) {
[output setValue:a.value forKey:a.name];
dispatch_group_leave(requestGroup);
}];
Use dispatch_group_t. See Waiting on Groups of Queued Tasks.
The topic doesn't mention it, but use dispatch_group_notify to register a block instead of waiting inline.

Obj-C return to a block from a delegate method?

I'm writing a mac app that runs its own web server, using the GCDWebServer library (https://github.com/swisspol/GCDWebServer). My app delegate handles GET requests like so:
__weak typeof(self) weakSelf = self;
[webServer addDefaultHandlerForMethod:#"GET"
requestClass:[GCDWebServerRequest class]
processBlock:^GCDWebServerResponse *(GCDWebServerRequest* request) {
return [weakSelf handleRequest:request];
}];
And then the handleRequest method returns the response data, something like:
return [GCDWebServerDataResponse responseWithHTML:#"<html><body><p>Hello World!</p></body></html>"];
So far so good. Except now I want the handleRequest method to use NSSpeechSynthesizer to create an audio file with some spoken text in it, and then wait for the speechSynthesizer:didFinishSpeaking method to be called before returning to the processBlock.
// NSSpeechSynthesizerDelegate method:
- (void)speechSynthesizer:(NSSpeechSynthesizer *)sender didFinishSpeaking:(BOOL)success
{
NSLog(#"did finish speaking, success: %d", success);
// return to processBlock...
}
Problem is, I have no idea how to do this. Is there a way to return from the speechSynthesizer:didFinishSpeaking method into the processBlock defined above?
You need to run the speech synthesizer on a separate thread with its own run loop, and use a lock to allow your request thread to wait for the operation to complete on the speech thread.
Assuming the web server maintains its own thread(s) and runloop, you can use your app's main thread to run the speech synthesizer, and you can use NSCondition to signal completion to the web response thread.
A basic (untested) example (without error handling):
#interface SynchroSpeaker : NSObject<NSSpeechSynthesizerDelegate>
- (id)initWithText:(NSString*)text outputUrl:(NSURL*)url;
- (void)run;
#end
#implementation SynchroSpeaker
{
NSCondition* _lock;
NSString* _text;
NSURL* _url;
NSSpeechSynthesizer* _synth;
}
- (id)initWithText:(NSString*)text outputUrl:(NSURL*)url
{
if (self = [super init])
{
_text = text;
_url = url;
_lock = [NSCondition new];
}
return self;
}
- (void)run
{
NSAssert(![NSThread isMainThread], #"This method cannot execute on the main thread.");
[_lock lock];
[self performSelectorOnMainThread:#selector(startOnMainThread) withObject:nil waitUntilDone:NO];
[_lock wait];
[_lock unlock];
}
- (void)startOnMainThread
{
NSAssert([NSThread isMainThread], #"This method must execute on the main thread.");
[_lock lock];
//
// Set up your speech synethsizer and start speaking
//
}
- (void)speechSynthesizer:(NSSpeechSynthesizer *)sender didFinishSpeaking:(BOOL)success
{
//
// Signal waiting thread that speaking has completed
//
[_lock signal];
[_lock unlock];
}
#end
It's used like so:
- (id)handleRequest:(id)request
{
SynchroSpeaker* speaker = [[SynchroSpeaker alloc] initWithText:#"Hello World" outputUrl:[NSURL fileURLWithPath:#"/tmp/foo.dat"]];
[speaker run];
////
return response;
}
GCDWebServer does run into its own threads (I guess 2 of them) - not in the main one. My solution needed to run code in Main Thread when calling the ProcessBlock.
I found this way that suits my needs:
First declare a weak storage for my AppDelegate: __weak AppDelegate *weakSelf = self;. Doing so I can access all my properties within the block.
Declare a strong reference to AppDelegate from within the block like so: __strong AppDelegate* strongSelf = weakSelf;
Use NSOperationQueue to align the operation on mainThread:
[[NSOperationQueue mainQueue] addOperationWithBlock:^ {
//Your code goes in here
NSLog(#"Main Thread Code");
[strongSelf myMethodOnMainThread];
}];
In this way myMethodOnMainThread surely will run where it's supposed to.
For sake of clarity I quote my relevant code section:
webServer = [[GCDWebServer alloc] init];
webServer.delegate = self;
__weak AppDelegate *weakSelf = self;
// Add a handler to respond to GET requests
[webServer addDefaultHandlerForMethod:#"GET"
requestClass:[GCDWebServerRequest class]
asyncProcessBlock:^(GCDWebServerRequest* request, GCDWebServerCompletionBlock completionBlock) {
__strong AppDelegate* strongSelf = weakSelf;
[[NSOperationQueue mainQueue] addOperationWithBlock:^ {
//Your code goes in here
NSLog(#"Main Thread Code");
[strongSelf myMethodOnMainThread];
}];
GCDWebServerDataResponse* response = [GCDWebServerDataResponse responseWithJSONObject:packet];
completionBlock(response);
}];
GCWebServer supports fully asynchronous responses as of version 3.0 and later [1].
[webServer addDefaultHandlerForMethod:#"GET"
requestClass:[GCDWebServerRequest class]
asyncProcessBlock:^(GCDWebServerRequest* request, GCDWebServerCompletionBlock completionBlock) {
// 1. Trigger speech synthesizer on main thread (or whatever thread it has to run on) and save "completionBlock"
// 2. Have the delegate from the speech synthesizer call "completionBlock" when done passing an appropriate response
}];
[1] https://github.com/swisspol/GCDWebServer#asynchronous-http-responses

Wait for two async methods to complete

I'd like to init a model, let the model do some async stuff and present a new viewcontroller once completed. But how do i wait for the two async methods to be completed and how do I setup the callback method?
Pseudocode
In my StartViewController.m:
-(void)openArticle
{
article = [Article initWithObject:someObject];
article.callback = changeView;
}
-(void)changeView
{
[self presentViewController:someController];
}
In my ArticleModel.m:
-(void)initWithObject:someObject
{
[self loadImage]
[self geoCode]
}
-(void)loadImage
{
runAsyncMethod: success:^() // This one is actually a AFNetworking setImageWithURLRequest
}
-(void)geoCode
{
runAnotherAsyncMethod: success:^() // This one is actually a geocodeAddressString operation
}
You can achieve this using dispatch_groups
- (void)initWithObject:(id)someObject
{
self = [super init];
if (self) {
self.dispatch_group = dispatch_group_create();
[self loadImage]
[self geoCode]
dispatch_group_notify(self.dispatch_group, dispatch_get_main_queue(), ^{
NSLog(#"Push new view controller");
});
}
return self;
}
- (void)loadImage
{
dispatch_group_enter(self.dispatch_group);
__weak __typeof(self) weakSelf = self;
runAsyncMethod: success:^{
__typeof(weakSelf) strongSelf = weakSelf;
if (strongSelf.dispatch_group) {
dispatch_group_leave(strongSelf.dispatch_group); // You need to ensure that this is called in both success and failure
}
}
}
- (void)geoCode
{
dispatch_group_enter(self.dispatch_group);
__weak __typeof(self) weakSelf = self;
runAnotherAsyncMethod: success:^{
__typeof(weakSelf) strongSelf = weakSelf;
if (strongSelf.dispatch_group) {
dispatch_group_leave(strongSelf.dispatch_group);
}
}
}
You do not wait. If you wait, it isn't asynchronous! You would be losing the entire point of asynchronous if you were to wait.
What you do is, when your success handler is called, you step out to the main thread (just in case you got called back on a background thread) and now do whatever you need to do. In other words, you just let your success handler get called whenever it happens to get called.
In your case, you might like to chain the things you want to do:
Call loadImage
In its callback, call geoCode
In its callback, step out to the main thread and present the new view controller.
You can use dispatch_group so that when a method is over, it just leaves the group. I use a similar code myself and it works like a charm.
- (void)initWithObject:someObject {
// Create a dispatch group
dispatch_group_t group = dispatch_group_create();
[self loadImageWithDispatchGroup:group];
[self geoCodeWithDispatchGroup:group];
// Here we wait for all the requests to finish
dispatch_group_notify(group, dispatch_get_main_queue(), ^{
// Do whatever you need to do when all requests are finished
});
}
- (void)loadImageWithDispatchGroup:(dispatch_group_t)group {
dispatch_group_enter(group);
runAsyncMethod: success:^() // This one is actually a AFNetworking setImageWithURLRequest
// In your success or failure AFNetworking method, call this as soon as the request ended
dispatch_group_leave(group);
}
- (void)geoCodeWithDispatchGroup:(dispatch_group_t)group {
dispatch_group_enter(group);
runAnotherAsyncMethod: success:^() // This one is actually a geocodeAddressString operation
// In your success async geocode callback method, call this as soon as the request ended
dispatch_group_leave(group);
}
I do not known your needs but native GCD way to wait several asynch tasks is
void dispatch_barrier_async(dispatch_queue_t queue, dispatch_block_t block);
https://developer.apple.com/library/ios/documentation/Performance/Reference/GCD_libdispatch_Ref/Reference/reference.html#//apple_ref/c/func/dispatch_barrier_async

Objective-C – Waiting for two async methods to complete

I'm calling four methods that I want to execute in synchronous order, the first two methods are synchronous, the last two methods are asynchronous (data fetching from URLs).
Pseudo-code:
- (void)syncData {
// Show activity indicator
[object sync]; // Synchronous method
[object2 sync]; // Synchronous method
BOOL object3Synced = [object3 sync]; // Async method
BOOL object4Synced = [object4 sync]; // Async method
// Wait for object3 and object4 has finished and then hide activity indicator
}
How can I achieve this?
Use a barrier:
void dispatch_barrier_async(dispatch_queue_t queue, dispatch_block_t block);
Submits a barrier block for asynchronous execution and returns immediately.
When the barrier block reaches the front of a private concurrent
queue, it is not executed immediately.
Instead, the queue waits until its currently executing blocks finish executing.
At that point, the
queue executes the barrier block by itself. Any blocks submitted after
the barrier block are not executed until the barrier block completes.
This example outputs 1 2 3 4 done although being asynchronous, it could be 1 2 4 3 done. Since I understand you want to handle an activity indicator, this shouldn't matter.
#import <Foundation/Foundation.h>
int main(int argc, char *argv[]) {
#autoreleasepool {
dispatch_queue_t queue = dispatch_queue_create("com.myqueue", 0);
dispatch_sync(queue, ^(){NSLog(#"1");} );
dispatch_sync(queue, ^(){NSLog(#"2");});
dispatch_async(queue, ^(){NSLog(#"3");});
dispatch_async(queue, ^(){NSLog(#"4");});
dispatch_barrier_sync(queue, ^(){NSLog(#"done");});
}
}
For other ways to test asynchronous code, see: https://stackoverflow.com/a/11179523/412916
Assuming you actually have some sort of way of knowing when the asynchronous methods are done, what you probably want is something like:
- (void)syncData {
// Show activity indicator
[object sync]; // Synchronous method
[object2 sync]; // Synchronous method
_object3Synced = _object4Synced = NO;
[object3 syncWithCompletionHandler:
^{
_object3Synced = YES;
[self considerHidingActivityIndicator];
}]; // Async method
[object4 syncWithCompletionHandler:
^{
_object4Synced = YES;
[self considerHidingActivityIndicator];
}]; // Async method
}
- (void)considerHidingActivityIndicator
{
if(_object3Synced && _object4Synced)
{
// hide activity indicator, etc
}
}
You can make a subclass of UIActivityInidicator, add an activityCount property and implement these two additional methods:
- (void)incrementActivityCount
{
if(_activityCount == 0)
{
[self startAnimating];
}
_activityCount++;
}
- (void)decrementActivityCount
{
_activityCount--;
if(_activityCount <= 0)
{
_activityCount = 0;
[self stopAnimating];
}
}
Now whenever you start something that uses the activity counter call incrementActivityCount and in its completion block (or otherwise when it finishes) call decrementActivityCount. You can do other things if you want in these methods, the above is just a simple example which is probably sufficient in most cases (especially if you set hidesWhenStopped = YES).
You would need to launch the first Async method and use a completion block. In the completion block of the first async method, you would launch your second async method. Though this kind of makes using async methods irrelevant.

How do I wait for an asynchronously dispatched block to finish?

I am testing some code that does asynchronous processing using Grand Central Dispatch. The testing code looks like this:
[object runSomeLongOperationAndDo:^{
STAssert…
}];
The tests have to wait for the operation to finish. My current solution looks like this:
__block BOOL finished = NO;
[object runSomeLongOperationAndDo:^{
STAssert…
finished = YES;
}];
while (!finished);
Which looks a bit crude, do you know a better way? I could expose the queue and then block by calling dispatch_sync:
[object runSomeLongOperationAndDo:^{
STAssert…
}];
dispatch_sync(object.queue, ^{});
…but that’s maybe exposing too much on the object.
Trying to use a dispatch_semaphore. It should look something like this:
dispatch_semaphore_t sema = dispatch_semaphore_create(0);
[object runSomeLongOperationAndDo:^{
STAssert…
dispatch_semaphore_signal(sema);
}];
if (![NSThread isMainThread]) {
dispatch_semaphore_wait(sema, DISPATCH_TIME_FOREVER);
} else {
while (dispatch_semaphore_wait(sema, DISPATCH_TIME_NOW)) {
[[NSRunLoop currentRunLoop] runMode:NSDefaultRunLoopMode beforeDate:[NSDate dateWithTimeIntervalSinceNow:0]];
}
}
This should behave correctly even if runSomeLongOperationAndDo: decides that the operation isn't actually long enough to merit threading and runs synchronously instead.
In addition to the semaphore technique covered exhaustively in other answers, we can now use XCTest in Xcode 6 to perform asynchronous tests via XCTestExpectation. This eliminates the need for semaphores when testing asynchronous code. For example:
- (void)testDataTask
{
XCTestExpectation *expectation = [self expectationWithDescription:#"asynchronous request"];
NSURL *url = [NSURL URLWithString:#"http://www.apple.com"];
NSURLSessionTask *task = [self.session dataTaskWithURL:url completionHandler:^(NSData *data, NSURLResponse *response, NSError *error) {
XCTAssertNil(error, #"dataTaskWithURL error %#", error);
if ([response isKindOfClass:[NSHTTPURLResponse class]]) {
NSInteger statusCode = [(NSHTTPURLResponse *) response statusCode];
XCTAssertEqual(statusCode, 200, #"status code was not 200; was %d", statusCode);
}
XCTAssert(data, #"data nil");
// do additional tests on the contents of the `data` object here, if you want
// when all done, Fulfill the expectation
[expectation fulfill];
}];
[task resume];
[self waitForExpectationsWithTimeout:10.0 handler:nil];
}
For the sake of future readers, while the dispatch semaphore technique is a wonderful technique when absolutely needed, I must confess that I see too many new developers, unfamiliar with good asynchronous programming patterns, gravitate too quickly to semaphores as a general mechanism for making asynchronous routines behave synchronously. Worse I've seen many of them use this semaphore technique from the main queue (and we should never block the main queue in production apps).
I know this isn't the case here (when this question was posted, there wasn't a nice tool like XCTestExpectation; also, in these testing suites, we must ensure the test does not finish until the asynchronous call is done). This is one of those rare situations where the semaphore technique for blocking the main thread might be necessary.
So with my apologies to the author of this original question, for whom the semaphore technique is sound, I write this warning to all of those new developers who see this semaphore technique and consider applying it in their code as a general approach for dealing with asynchronous methods: Be forewarned that nine times out of ten, the semaphore technique is not the best approach when encounting asynchronous operations. Instead, familiarize yourself with completion block/closure patterns, as well as delegate-protocol patterns and notifications. These are often much better ways of dealing with asynchronous tasks, rather than using semaphores to make them behave synchronously. Usually there are good reasons that asynchronous tasks were designed to behave asynchronously, so use the right asynchronous pattern rather than trying to make them behave synchronously.
I’ve recently come to this issue again and wrote the following category on NSObject:
#implementation NSObject (Testing)
- (void) performSelector: (SEL) selector
withBlockingCallback: (dispatch_block_t) block
{
dispatch_semaphore_t semaphore = dispatch_semaphore_create(0);
[self performSelector:selector withObject:^{
if (block) block();
dispatch_semaphore_signal(semaphore);
}];
dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);
dispatch_release(semaphore);
}
#end
This way I can easily turn asynchronous call with a callback into a synchronous one in tests:
[testedObject performSelector:#selector(longAsyncOpWithCallback:)
withBlockingCallback:^{
STAssert…
}];
Generally don't use any of these answers, they often won't scale (there's exceptions here and there, sure)
These approaches are incompatible with how GCD is intended to work and will end up either causing deadlocks and/or killing the battery by nonstop polling.
In other words, rearrange your code so that there is no synchronous waiting for a result, but instead deal with a result being notified of change of state (eg callbacks/delegate protocols, being available, going away, errors, etc.). (These can be refactored into blocks if you don't like callback hell.) Because this is how to expose real behavior to the rest of the app than hide it behind a false façade.
Instead, use NSNotificationCenter, define a custom delegate protocol with callbacks for your class. And if you don't like mucking with delegate callbacks all over, wrap them into a concrete proxy class that implements the custom protocol and saves the various block in properties. Probably also provide convenience constructors as well.
The initial work is slightly more but it will reduce the number of awful race-conditions and battery-murdering polling in the long-run.
(Don't ask for an example, because it's trivial and we had to invest the time to learn objective-c basics too.)
Here's a nifty trick that doesn't use a semaphore:
dispatch_queue_t serialQ = dispatch_queue_create("serialQ", DISPATCH_QUEUE_SERIAL);
dispatch_async(serialQ, ^
{
[object doSomething];
});
dispatch_sync(serialQ, ^{ });
What you do is wait using dispatch_sync with an empty block to Synchronously wait on a serial dispatch queue until the A-Synchronous block has completed.
- (void)performAndWait:(void (^)(dispatch_semaphore_t semaphore))perform;
{
NSParameterAssert(perform);
dispatch_semaphore_t semaphore = dispatch_semaphore_create(0);
perform(semaphore);
dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);
dispatch_release(semaphore);
}
Example usage:
[self performAndWait:^(dispatch_semaphore_t semaphore) {
[self someLongOperationWithSuccess:^{
dispatch_semaphore_signal(semaphore);
}];
}];
There’s also SenTestingKitAsync that lets you write code like this:
- (void)testAdditionAsync {
[Calculator add:2 to:2 block^(int result) {
STAssertEquals(result, 4, nil);
STSuccess();
}];
STFailAfter(2.0, #"Timeout");
}
(See objc.io article for details.) And since Xcode 6 there’s an AsynchronousTesting category on XCTest that lets you write code like this:
XCTestExpectation *somethingHappened = [self expectationWithDescription:#"something happened"];
[testedObject doSomethigAsyncWithCompletion:^(BOOL succeeded, NSError *error) {
[somethingHappened fulfill];
}];
[self waitForExpectationsWithTimeout:1 handler:NULL];
Here is an alternative from one of my tests:
__block BOOL success;
NSCondition *completed = NSCondition.new;
[completed lock];
STAssertNoThrow([self.client asyncSomethingWithCompletionHandler:^(id value) {
success = value != nil;
[completed lock];
[completed signal];
[completed unlock];
}], nil);
[completed waitUntilDate:[NSDate dateWithTimeIntervalSinceNow:2]];
[completed unlock];
STAssertTrue(success, nil);
Swift 4:
Use synchronousRemoteObjectProxyWithErrorHandler instead of remoteObjectProxy when creating the remote object. No more need for a semaphore.
Below example will return the version received from the proxy. Without the synchronousRemoteObjectProxyWithErrorHandler it will crash (trying to access non accessible memory):
func getVersion(xpc: NSXPCConnection) -> String
{
var version = ""
if let helper = xpc.synchronousRemoteObjectProxyWithErrorHandler({ error in NSLog(error.localizedDescription) }) as? HelperProtocol
{
helper.getVersion(reply: {
installedVersion in
print("Helper: Installed Version => \(installedVersion)")
version = installedVersion
})
}
return version
}
dispatch_semaphore_t sema = dispatch_semaphore_create(0);
[object blockToExecute:^{
// ... your code to execute
dispatch_semaphore_signal(sema);
}];
while (dispatch_semaphore_wait(semaphore, DISPATCH_TIME_NOW)) {
[[NSRunLoop currentRunLoop]
runUntilDate:[NSDate dateWithTimeIntervalSinceNow:0]];
}
This did it for me.
Sometimes, Timeout loops are also helpful. May you wait until you get some (may be BOOL) signal from async callback method, but what if no response ever, and you want to break out of that loop?
Here below is solution, mostly answered above, but with an addition of Timeout.
#define CONNECTION_TIMEOUT_SECONDS 10.0
#define CONNECTION_CHECK_INTERVAL 1
NSTimer * timer;
BOOL timeout;
CCSensorRead * sensorRead ;
- (void)testSensorReadConnection
{
[self startTimeoutTimer];
dispatch_semaphore_t sema = dispatch_semaphore_create(0);
while (dispatch_semaphore_wait(sema, DISPATCH_TIME_NOW)) {
/* Either you get some signal from async callback or timeout, whichever occurs first will break the loop */
if (sensorRead.isConnected || timeout)
dispatch_semaphore_signal(sema);
[[NSRunLoop currentRunLoop] runMode:NSDefaultRunLoopMode
beforeDate:[NSDate dateWithTimeIntervalSinceNow:CONNECTION_CHECK_INTERVAL]];
};
[self stopTimeoutTimer];
if (timeout)
NSLog(#"No Sensor device found in %f seconds", CONNECTION_TIMEOUT_SECONDS);
}
-(void) startTimeoutTimer {
timeout = NO;
[timer invalidate];
timer = [NSTimer timerWithTimeInterval:CONNECTION_TIMEOUT_SECONDS target:self selector:#selector(connectionTimeout) userInfo:nil repeats:NO];
[[NSRunLoop currentRunLoop] addTimer:timer forMode:NSDefaultRunLoopMode];
}
-(void) stopTimeoutTimer {
[timer invalidate];
timer = nil;
}
-(void) connectionTimeout {
timeout = YES;
[self stopTimeoutTimer];
}
Very primitive solution to the problem:
void (^nextOperationAfterLongOperationBlock)(void) = ^{
};
[object runSomeLongOperationAndDo:^{
STAssert…
nextOperationAfterLongOperationBlock();
}];
I have to wait until a UIWebView is loaded before running my method, I was able to get this working by performing UIWebView ready checks on main thread using GCD in combination with semaphore methods mentioned in this thread. Final code looks like this:
-(void)myMethod {
if (![self isWebViewLoaded]) {
dispatch_semaphore_t semaphore = dispatch_semaphore_create(0);
__block BOOL isWebViewLoaded = NO;
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
while (!isWebViewLoaded) {
dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)((0.0) * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
isWebViewLoaded = [self isWebViewLoaded];
});
[NSThread sleepForTimeInterval:0.1];//check again if it's loaded every 0.1s
}
dispatch_sync(dispatch_get_main_queue(), ^{
dispatch_semaphore_signal(semaphore);
});
});
while (dispatch_semaphore_wait(semaphore, DISPATCH_TIME_NOW)) {
[[NSRunLoop currentRunLoop] runMode:NSDefaultRunLoopMode beforeDate:[NSDate dateWithTimeIntervalSinceNow:0]];
}
}
}
//Run rest of method here after web view is loaded
}