Using libSVM programmatically - libsvm

I have started using libSVM (java: https://github.com/cjlin1/libsvm) programmatically. I wrote the following code to test it:
svm_parameter param = new svm_parameter();
// default values
param.svm_type = svm_parameter.C_SVC;
param.kernel_type = svm_parameter.RBF;
param.degree = 3;
param.gamma = 0;
param.coef0 = 0;
param.nu = 0.5;
param.cache_size = 40;
param.C = 1;
param.eps = 1e-3;
param.p = 0.1;
param.shrinking = 1;
param.probability = 0;
param.nr_weight = 0;
param.weight_label = new int[0];
param.weight = new double[0];
svm_problem prob = new svm_problem();
prob.l = 4;
prob.y = new double[prob.l];
prob.x = new svm_node[prob.l][2];
for(int i = 0; i < prob.l; i++)
{
prob.x[i][0] = new svm_node();
prob.x[i][1] = new svm_node();
prob.x[i][0].index = 1;
prob.x[i][1].index = 2;
prob.x[i][0].value = (i%2!=0)?-1:1;
prob.x[i][1].value = (i/2%2==0)?-1:1;
prob.y[i] = (prob.x[i][0].value == 1 && prob.x[i][1].value == 1)?1:-1;
System.out.println("X = [ " + prob.x[i][0].value + ", " + prob.x[i][1].value + " ] \t -> " + prob.y[i] );
}
svm_model model = svm.svm_train(prob, param);
int test_length = 4;
for( int i = 0; i < test_length; i++)
{
svm_node[] x_test = new svm_node[2];
x_test[0] = new svm_node();
x_test[1] = new svm_node();
x_test[0].index = 1;
x_test[0].value = (i%2!=0)?-1:1;
x_test[1].index = 2;
x_test[1].value = (i/2%2==0)?-1:1;
double d = svm.svm_predict(model, x_test);
System.out.println("X[0] = " + x_test[0].value + " X[1] = " + x_test[1].value + "\t\t\t Y = "
+ ((x_test[0].value == 1 && x_test[1].value == 1)?1:-1) + "\t\t\t The predicton = " + d);
}
Since I am testing on the same training data, I'd expect to get 100% accuracy, but the output that I get, is the following:
X = [ 1.0, -1.0 ] -> -1.0
X = [ -1.0, -1.0 ] -> -1.0
X = [ 1.0, 1.0 ] -> 1.0
X = [ -1.0, 1.0 ] -> -1.0
*
optimization finished, #iter = 1
nu = 0.5
obj = -20000.0, rho = 1.0
nSV = 2, nBSV = 2
Total nSV = 2
X[0] = 1.0 X[1] = -1.0 Y = -1 The predicton = -1.0
X[0] = -1.0 X[1] = -1.0 Y = -1 The predicton = -1.0
X[0] = 1.0 X[1] = 1.0 Y = 1 The predicton = -1.0
X[0] = -1.0 X[1] = 1.0 Y = -1 The predicton = -1.0
We can see that the following prediction is erroneous:
X[0] = 1.0 X[1] = 1.0 Y = 1 The predicton = -1.0
Anyone knows what is the mistake in my code?

You're using Radial Basis Function (param.kernel_type = svm_parameter.RBF) which uses gamma. Setting 'param.gamma = 1' should yield 100% accuracy.

Related

I'm making a code and my question is about the fsolve of scipy.optimize, I get to the value of the function, but it returns a false root

class ConstanteEquilibrio:
def __init__(self, lista_componentes, lista_coeficientes, T, P, mols_i):
self.lista_componentes = lista_componentes
self.lista_coeficientes = lista_coeficientes
self.T = T
self.P = P
self.mols_i = mols_i
return
def Calcula(self):
somatorio_G = 0.0
somatorio_H = 0.0
somatorio_A = 0.0
somatorio_B = 0.0
somatorio_C = 0.0
somatorio_D = 0.0
somatorio_E = 0.0
R = 8.314
Tref = 298.15
nomes = []
Tc_mix = []
Pc_mix = []
w_mix = []
dados_compostos = pd.read_excel("DadosCompostosPadrao.xlsx")
for i in range(0, len(self.lista_componentes)):
G_i = dados_compostos.loc[dados_compostos['Composto'] == self.lista_componentes[i], 'G0 (298)'].values[0]
H_i = dados_compostos.loc[dados_compostos['Composto'] == self.lista_componentes[i], 'H0 (298)'].values[0]
A_i = dados_compostos.loc[dados_compostos['Composto'] == self.lista_componentes[i], 'a'].values[0]
B_i = dados_compostos.loc[dados_compostos['Composto'] == self.lista_componentes[i], 'b'].values[0]
C_i = dados_compostos.loc[dados_compostos['Composto'] == self.lista_componentes[i], 'c'].values[0]
D_i = dados_compostos.loc[dados_compostos['Composto'] == self.lista_componentes[i], 'd'].values[0]
E_i = dados_compostos.loc[dados_compostos['Composto'] == self.lista_componentes[i], 'e'].values[0]
nome_i = dados_compostos.loc[dados_compostos['Composto'] == self.lista_componentes[i], 'Nome'].values[0]
nomes.append(nome_i)
dados_composto_i = ChemicalConstantsPackage.constants_from_IDs([nome_i])
Tc_mix.append(dados_composto_i.Tcs[0])
Pc_mix.append(dados_composto_i.Pcs[0])
w_mix.append(dados_composto_i.omegas[0])
somatorio_G = somatorio_G + self.lista_coeficientes[i] * G_i
somatorio_H = somatorio_H + self.lista_coeficientes[i] * H_i
somatorio_A = somatorio_A + self.lista_coeficientes[i] * A_i
somatorio_B = somatorio_B + self.lista_coeficientes[i] * B_i
somatorio_C = somatorio_C + self.lista_coeficientes[i] * C_i
somatorio_D = somatorio_D + self.lista_coeficientes[i] * D_i
somatorio_E = somatorio_E + self.lista_coeficientes[i] * E_i
K298 = np.exp(-somatorio_G*1000 / (R * Tref))
lnK_K298 = (-somatorio_H*1000/R + somatorio_A*Tref + somatorio_B*(Tref**2)/2 + somatorio_C*(Tref**3)/3 - somatorio_D/Tref + somatorio_E*(Tref**4)/4)*(1/self.T - 1/Tref) + somatorio_A*np.log(self.T/Tref) + somatorio_B*(self.T-Tref)/2 + somatorio_C*(self.T**2-Tref**2)/6 + somatorio_D*((1/self.T**2)-(1/Tref**2))/2 - somatorio_E*(self.T**3-Tref**3)/12
K_T = K298 * np.exp(lnK_K298)
def CalculaE(e):
y_componentes = []
FO = 0.0
n_total = sum(self.mols_i) + e * sum(self.lista_coeficientes)
for i in range(0, len(self.lista_componentes)):
y_i = (self.mols_i[i] + self.lista_coeficientes[i] * e)/n_total
y_componentes.append(y_i)
for j in range(0, len(self.lista_componentes)):
FO = FO + (self.P * y_componentes[j])**(self.lista_coeficientes[j])
#print(FO)
return FO - K_T
e_reacao = fsolve(CalculaE, 0.5)
e_reacao = e_reacao[0]
#print(e_reacao)
n_componentes = []
y_componentes = []
for j in range(0, len(self.lista_componentes)):
n_i = (self.mols_i[j] + self.lista_coeficientes[j] * e_reacao)
n_componentes.append(n_i)
n_total = sum(n_componentes)
for w in range(0, len(self.lista_componentes)):
y_i = n_componentes[w] / n_total
print(f'{self.lista_componentes[w]} : {y_i * 100:.3f} %')
return K298, K_T
However, when I print in e_reacao I arrive at the value of K_T, which is 14,128, (theoretically it reached the zero of the function) only for some reason when I replace the value in the final expression:
K_T = (e_reacao / (1 + e_reacao))**2 / ((1 - e_reacao)/(1 + e_reacao)) I don't get the value of 14.128 because the value of e_reaction of the last interaction is 0.8592 but it was supposed to be , approximately 0.9663. Does anyone have an idea what it could be? Something wrong I'm doing in the code. Thanks in advance.

Conversion ECEF XYZ to LLH (LAT/LONG/HEIGHT) and translation back - not accurate / possible error in IronPython script

I've modeled a 3D earth with gridpoints, as below:
The points are represented in 3D space as XYZ coordinates.
I then convert XYZ to Lat/Long/Height(elevation) based on the script I took from here:
JSFiddle
For some reason I got really strange results when trying to find XYZ of LLH not from my set, so I tried to verify the initial script by converting XYZ to LLH and then the same LLH back to XYZ to see if I get the same coordinate.
Instead, the resulting coordinate is some XYZ on earth, unrelated to the original XYZ position.
XYZ to LLH script:
Source: JSFiddle
def xyzllh(x,y,z):
""" xyz vector to lat,lon,height
output:
llhvec[3] with components
flat geodetic latitude in deg
flon longitude in deg
altkm altitude in km
"""
dtr = math.pi/180.0
rrnrm = [0.0] * 3
llhvec = [0.0] * 3
geodGBL()
esq = EARTH_Esq
rp = math.sqrt( x*x + y*y + z*z )
flatgc = math.asin( z / rp )/dtr
testval= abs(x) + abs(y)
if ( testval < 1.0e-10):
flon = 0.0
else:
flon = math.atan2( y,x )/dtr
if (flon < 0.0 ):
flon = flon + 360.0
p = math.sqrt( x*x + y*y )
# on pole special case
if ( p < 1.0e-10 ):
flat = 90.0
if ( z < 0.0 ):
flat = -90.0
altkm = rp - rearth(flat)
llhvec[0] = flat
llhvec[1] = flon
llhvec[2] = altkm
return llhvec
# first iteration, use flatgc to get altitude
# and alt needed to convert gc to gd lat.
rnow = rearth(flatgc)
altkm = rp - rnow
flat = gc2gd(flatgc,altkm)
rrnrm = radcur(flat)
rn = rrnrm[1]
for x in range(5):
slat = math.sin(dtr*flat)
tangd = ( z + rn*esq*slat ) / p
flatn = math.atan(tangd)/dtr
dlat = flatn - flat
flat = flatn
clat = math.cos( dtr*flat )
rrnrm = radcur(flat)
rn = rrnrm[1]
altkm = (p/clat) - rn
if ( abs(dlat) < 1.0e-12 ):
break
llhvec[0] = flat
llhvec[1] = flon
llhvec[2] = altkm
return llhvec
# globals
EARTH_A = 0
EARTH_B = 0
EARTH_F = 0
EARTH_Ecc = 0
EARTH_Esq = 0
# starting function do_llhxyz()
CallCount = 0
llh = [0.0] * 3
dtr = math.pi/180
CallCount = CallCount + 1
sans = " \n"
llh = xyzllh(x,y,z)
latitude = llh[0]
longitude= llh[1]
hkm = llh[2]
height = 1000.0 * hkm
latitude = fformat(latitude,5)
longitude = fformat(longitude,5)
height = fformat(height,1)
sans = sans +"Latitude,Longitude, Height (ellipsoidal) from ECEF\n"
sans = sans + "\n"
sans = sans +"Latitude : " + str(latitude) + " deg N\n"
sans = sans +"Longitude : " + str(longitude - 180) + " deg E\n"
sans = sans +"Height : " + str(height) + " m\n"
lats = []
longs = []
heights = []
lats.append(str(latitude))
longs.append(str(longitude - 180))
heights.append(str(height))
And this is the LLH to XYZ script:
Source: www.mathworks.com
a = 6378137
t = 8.1819190842622e-2
# (prime vertical radius of curvature)
N = a / math.sqrt(1 - (t*t) * (math.sin(lat)*math.sin(lat)))
x = []
y = []
z = []
# results:
x.append( ((N+height) * math.cos(lat) * math.cos(long))/1000 )
y.append( ((N+height) * math.cos(lat) * math.sin(long))/1000 )
z.append( (((1-t*t) * N + height) * math.sin(lat))/1000 )
Anyone know what I'm doing wrong here?
Thanks!

Assignment problem - What am I doing wrong?

I am working on image seam carving project, looking for some help. Can someone tell me what am I doing wrong here, Hyperskill is not accepting my solution. I am pretty sure I did not understand the project statement correctly. (I’ve been fighting it for a week)
Project: https://hyperskill.org/projects/100/stages/553/implement
First I am finding the minimum seam from all possible seams.
var minX = 0
// (minSeamX, 0) would be the coordinate of the minimum seam
var minSeamX = 0
var minSeam = Double.MAX_VALUE
//Starting from top left find the sum of pixel energies for all possible seams(#width number of possible seams)
for (column in 0 until width) {
var totalSeam = 0.0
var xHigh = column
var xLow = column
var min = Double.MAX_VALUE
for (y in 0 until height) {
for (x in xLow..xHigh) {
if (x < 0 || x > width - 1) continue
val energy = calculateEnergy(x, y, bufferedImage)
// println("Energy $x $y $energy")
if (energy < min) {
min = energy
minX = x
}
}
totalSeam += min
min = Double.MAX_VALUE
xLow = minX - 1
xHigh = minX + 1
}
if (totalSeam < minSeam) {
minSeamX = column
minSeam = totalSeam
}
println("total:$totalSeam")
}
after that I am applying the color to the minimum seam pixels
var xLow = minSeamX
var xHigh = minSeamX
var min = Double.MAX_VALUE
for (y in 0 until height) {
for (x in xLow..xHigh) {
val energy = calculateEnergy(x, y, bufferedImage)
if (energy < min) {
min = energy
minX = x
}
}
val createGraphics = applyColor(outImage, minX, y)
min = Double.MAX_VALUE
xLow = minX - 1
xHigh = minX + 1
}
Complete code
package seamcarving
import java.awt.Color
import java.awt.Graphics2D
import java.awt.image.BufferedImage
import java.io.File
import javax.imageio.ImageIO
import kotlin.math.pow
import kotlin.math.sqrt
fun main(args: Array<String>) {
val bufferedImage = ImageIO.read(File("/Users/name/Downloads/images/blue.png"))
val outImage = ImageIO.read(File("/Users/name/Downloads/images/blue.png"))
val height = bufferedImage.height
val width = bufferedImage.width
var minX = 0
// (minSeamX, 0) would be the coordinate of the minimum seam
var minSeamX = 0
var minSeam = Double.MAX_VALUE
//Starting from top left find the sum of pixel energies for all possible seams(#width number of possible seams)
for (column in 0 until width) {
var totalSeam = 0.0
var xHigh = column
var xLow = column
var min = Double.MAX_VALUE
for (y in 0 until height) {
for (x in xLow..xHigh) {
if (x < 0 || x > width - 1) continue
val energy = calculateEnergy(x, y, bufferedImage)
// println("Energy $x $y $energy")
if (energy < min) {
min = energy
minX = x
}
}
totalSeam += min
min = Double.MAX_VALUE
xLow = minX - 1
xHigh = minX + 1
}
if (totalSeam < minSeam) {
minSeamX = column
minSeam = totalSeam
}
println("total:$totalSeam")
}
var xLow = minSeamX
var xHigh = minSeamX
var min = Double.MAX_VALUE
for (y in 0 until height) {
for (x in xLow..xHigh) {
val energy = calculateEnergy(x, y, bufferedImage)
if (energy < min) {
min = energy
minX = x
}
}
val createGraphics = applyColor(outImage, minX, y)
min = Double.MAX_VALUE
xLow = minX - 1
xHigh = minX + 1
}
// for (x in 0 until width) {
// for (y in 0 until height) {
// val intensity = ((255.0 * array[x][y]) / max).toInt()
// val color = Color(intensity, intensity, intensity)
//// outputImage.setRGB(x, y, intensity)
// createGraphics.paint = color
// createGraphics.fillRect(x, y, 1, 1)
// }
// }
ImageIO.write(outImage, "png", File("out.png"))
// ImageIO.write(bufferedImage, "png", File("${args[3]}"))
}
private fun applyColor(outputImage: BufferedImage, maxX: Int, maxY: Int): Graphics2D? {
val createGraphics = outputImage.createGraphics()
val color = Color(255, 0, 0)
createGraphics.paint = color
createGraphics.fillRect(maxX, maxY, 1, 1)
return createGraphics
}
private fun calculateEnergy(x: Int, y: Int, bufferedImage: BufferedImage): Double {
return sqrt(getXGradient(x, y, bufferedImage) + getYGradient(x, y, bufferedImage))
}
fun getXGradient(x: Int, y: Int, inImage: BufferedImage): Double {
val width = inImage.width
var xx = x
var yy = y
if (x == 0) xx = 1
if (x == width - 1) xx = x - 1
val lc = Color(inImage.getRGB(xx - 1, yy))
val rc = Color(inImage.getRGB(xx + 1, yy))
return (lc.red - rc.red).toDouble().pow(2.0) + (lc.green - rc.green).toDouble().pow(2.0) + (lc.blue - rc.blue).toDouble().pow(2.0)
}
fun getYGradient(x: Int, y: Int, inImage: BufferedImage): Double {
val height = inImage.height
var xx = x
var yy = y
if (y == 0) yy = 1
if (y == height - 1) yy = y - 1
val lc = Color(inImage.getRGB(xx, yy - 1))
val rc = Color(inImage.getRGB(xx, yy + 1))
return (lc.red - rc.red).toDouble().pow(2.0) + (lc.green - rc.green).toDouble().pow(2.0) + (lc.blue - rc.blue).toDouble().pow(2.0)
}

THREE.JS + Delaunator.JS Keeping faces indexing

Probably this question is for Mapbox team and Delaunator.JS developers, but I hope that somebody could help me here.
I have a pseudo quadtree geometry (THREE.BufferGeometry) set by series of points having seven partitions with their individual draw call (geometry.addGroup() method) and material.
//pseudo quadtree
var points = [], indices = [], quad_uvs = [], groups = [], materials = [];
getSegmentSubpoints(0, new THREE.Vector3(-1024, 0, -1024), 1024, 1024, 4);
getSegmentSubpoints(1, new THREE.Vector3(0, 0, -1024), 1024, 1024, 4);
getSegmentSubpoints(2, new THREE.Vector3(-1024, 0, 0), 1024, 1024, 4);
getSegmentSubpoints(3, new THREE.Vector3(0, 0, 0), 512, 512, 8);
getSegmentSubpoints(4, new THREE.Vector3(512, 0, 0), 512, 512, 8);
getSegmentSubpoints(5, new THREE.Vector3(0, 0, 512), 512, 512, 8);
getSegmentSubpoints(6, new THREE.Vector3(512, 0, 512), 512, 512, 8);
var geometry = new THREE.BufferGeometry().setFromPoints(points);
geometry.setIndex(indices);
geometry.setAttribute( 'uv', new THREE.BufferAttribute(new Float32Array(quad_uvs), 2 ) );
geometry.computeVertexNormals();
var colors = [new THREE.Color(0xe6194b), new THREE.Color(0x3cb44b), new THREE.Color(0xffe119), new THREE.Color(0x4363d8), new THREE.Color(0xf58231), new THREE.Color(0x911eb4), new THREE.Color(0x46f0f0) ]
groups.forEach(function(g_, i_){ geometry.addGroup(g_.start, g_.end, g_.id); });
var plane = new THREE.Mesh(geometry, materials);
plane.rotation.set(Math.PI, 0, 0);
plane.position.set(-1152, 0, 0);
scene.add(plane);
function getSegmentSubpoints(id_, lt_, w_, h_, level_){
var subpoints = [];
var subindices = [];
var subquad = [];
var lastIndex = points.length;
var lastIndex2 = indices.length;
var step = {x: w_ / level_, z: h_ / level_ };
var stepT = {x: 1.0 / level_, z: 1.0 / level_ };
for(var z = 0; z <= level_; z++){
for(var x = 0; x <= level_; x++){
var dx = lt_.x + step.x * x;
var dz = lt_.z + step.z * z;
var dy = noise.simplex2(dx / 512.0, dz / 512.0) * 32.0;
subquad.push(...[stepT.x * x, stepT.z * z]);
subpoints.push(new THREE.Vector3(dx, dy, dz));
}
}
for(var i = 0; i < subpoints.length - level_ - 2; i++) {
if(i % (level_ + 1) != (level_)){
subindices.push(lastIndex + i, lastIndex + i + 1, lastIndex + i + level_ + 2, lastIndex + i + level_ + 2, lastIndex + i + level_ + 1, lastIndex + i);
}
}
points.push(...subpoints);
indices.push(...subindices);
quad_uvs.push(...subquad);
groups.push({id: id_, start: lastIndex2, end: subindices.length});
materials.push(new THREE.MeshBasicMaterial({ wireframe: true, map: new THREE.TextureLoader().load("textures/" + id_ + ".jpg")}));
}
Everything is fine, but for my project I have to process the current geometry through Delaunator.JS and it seems that the output has different triangles/faces indexing starting from the center.
There is dynamic colors for each segment to visualize indexing. Eventually, it has to be the same as previous one with seven materials and individual draw calls.
//delaunay
var geometry = new THREE.BufferGeometry().setFromPoints(points);
var indexDelaunay = Delaunator.from(points.map(v => { return [v.x, v.z]; }) );
var meshIndex = [];
for (let i = 0; i < indexDelaunay.triangles.length; i++){ meshIndex.push(indexDelaunay.triangles[i]); }
geometry.setIndex(meshIndex);
geometry.computeVertexNormals();
count = 0;
for(var i = 0; i < meshIndex.length; i += 6){
geometry.addGroup(i, 6, i / 6);
materials.push(new THREE.MeshBasicMaterial({ wireframe: true, color: new THREE.Color("hsl(" + (360 / 316 * count) + ",80%, 80%)")}))
count++;
}
var plane = new THREE.Mesh(geometry, materials);
plane.rotation.set(Math.PI, 0, 0)
plane.position.set(1152, 0, 0);
scene.add(plane);
So is there a way to re-index faces back so I could get the same result?
Yes, I could go through each Delaunator.triangles check its position/area for if it fits the certain partition, but it's not an elegant and fast solution. I bet it's possible to tweak Delaunator.JS code for right indexing on the fly.
The snippet is attached as well.
//https://hofk.de/main/discourse.threejs/2018/Triangulation/Triangulation.html
////by Mapbox https://github.com/mapbox/delaunator
(function (global, factory) {
typeof exports === 'object' && typeof module !== 'undefined' ? module.exports = factory() :
typeof define === 'function' && define.amd ? define(factory) :
(global.Delaunator = factory());
}(this, (function () { 'use strict';
var EPSILON = Math.pow(2, -52);
var Delaunator = function Delaunator(coords) {
var this$1 = this;
var n = coords.length >> 1;
if (n > 0 && typeof coords[0] !== 'number') { throw new Error('Expected coords to contain numbers.'); }
this.coords = coords;
var maxTriangles = 2 * n - 5;
var triangles = this.triangles = new Uint32Array(maxTriangles * 3);
var halfedges = this.halfedges = new Int32Array(maxTriangles * 3);
this._hashSize = Math.ceil(Math.sqrt(n));
var hullPrev = this.hullPrev = new Uint32Array(n);
var hullNext = this.hullNext = new Uint32Array(n);
var hullTri = this.hullTri = new Uint32Array(n);
var hullHash = new Int32Array(this._hashSize).fill(-1);
var ids = new Uint32Array(n);
var minX = Infinity;
var minY = Infinity;
var maxX = -Infinity;
var maxY = -Infinity;
for (var i = 0; i < n; i++) {
var x = coords[2 * i];
var y = coords[2 * i + 1];
if (x < minX) { minX = x; }
if (y < minY) { minY = y; }
if (x > maxX) { maxX = x; }
if (y > maxY) { maxY = y; }
ids[i] = i;
}
var cx = (minX + maxX) / 2;
var cy = (minY + maxY) / 2;
var minDist = Infinity;
var i0, i1, i2;
for (var i$1 = 0; i$1 < n; i$1++) {
var d = dist(cx, cy, coords[2 * i$1], coords[2 * i$1 + 1]);
if (d < minDist) {
i0 = i$1;
minDist = d;
}
}
var i0x = coords[2 * i0];
var i0y = coords[2 * i0 + 1];
minDist = Infinity;
for (var i$2 = 0; i$2 < n; i$2++) {
if (i$2 === i0) { continue; }
var d$1 = dist(i0x, i0y, coords[2 * i$2], coords[2 * i$2 + 1]);
if (d$1 < minDist && d$1 > 0) {
i1 = i$2;
minDist = d$1;
}
}
var i1x = coords[2 * i1];
var i1y = coords[2 * i1 + 1];
var minRadius = Infinity;
for (var i$3 = 0; i$3 < n; i$3++) {
if (i$3 === i0 || i$3 === i1) { continue; }
var r = circumradius(i0x, i0y, i1x, i1y, coords[2 * i$3], coords[2 * i$3 + 1]);
if (r < minRadius) {
i2 = i$3;
minRadius = r;
}
}
var i2x = coords[2 * i2];
var i2y = coords[2 * i2 + 1];
if (minRadius === Infinity) {
throw new Error('No Delaunay triangulation exists for this input.');
}
if (orient(i0x, i0y, i1x, i1y, i2x, i2y)) {
var i$4 = i1;
var x$1 = i1x;
var y$1 = i1y;
i1 = i2;
i1x = i2x;
i1y = i2y;
i2 = i$4;
i2x = x$1;
i2y = y$1;
}
var center = circumcenter(i0x, i0y, i1x, i1y, i2x, i2y);
this._cx = center.x;
this._cy = center.y;
var dists = new Float64Array(n);
for (var i$5 = 0; i$5 < n; i$5++) {
dists[i$5] = dist(coords[2 * i$5], coords[2 * i$5 + 1], center.x, center.y);
}
quicksort(ids, dists, 0, n - 1);
this.hullStart = i0;
var hullSize = 3;
hullNext[i0] = hullPrev[i2] = i1;
hullNext[i1] = hullPrev[i0] = i2;
hullNext[i2] = hullPrev[i1] = i0;
hullTri[i0] = 0;
hullTri[i1] = 1;
hullTri[i2] = 2;
hullHash[this._hashKey(i0x, i0y)] = i0;
hullHash[this._hashKey(i1x, i1y)] = i1;
hullHash[this._hashKey(i2x, i2y)] = i2;
this.trianglesLen = 0;
this._addTriangle(i0, i1, i2, -1, -1, -1);
for (var k = 0, xp = (void 0), yp = (void 0); k < ids.length; k++) {
var i$6 = ids[k];
var x$2 = coords[2 * i$6];
var y$2 = coords[2 * i$6 + 1];
if (k > 0 && Math.abs(x$2 - xp) <= EPSILON && Math.abs(y$2 - yp) <= EPSILON) { continue; }
xp = x$2;
yp = y$2;
if (i$6 === i0 || i$6 === i1 || i$6 === i2) { continue; }
var start = 0;
for (var j = 0, key = this._hashKey(x$2, y$2); j < this._hashSize; j++) {
start = hullHash[(key + j) % this$1._hashSize];
if (start !== -1 && start !== hullNext[start]) { break; }
}
start = hullPrev[start];
var e = start, q = (void 0);
while (q = hullNext[e], !orient(x$2, y$2, coords[2 * e], coords[2 * e + 1], coords[2 * q], coords[2 * q + 1])) {
e = q;
if (e === start) {
e = -1;
break;
}
}
if (e === -1) { continue; }
var t = this$1._addTriangle(e, i$6, hullNext[e], -1, -1, hullTri[e]);
hullTri[i$6] = this$1._legalize(t + 2);
hullTri[e] = t;
hullSize++;
var n$1 = hullNext[e];
while (q = hullNext[n$1], orient(x$2, y$2, coords[2 * n$1], coords[2 * n$1 + 1], coords[2 * q], coords[2 * q + 1])) {
t = this$1._addTriangle(n$1, i$6, q, hullTri[i$6], -1, hullTri[n$1]);
hullTri[i$6] = this$1._legalize(t + 2);
hullNext[n$1] = n$1;
hullSize--;
n$1 = q;
}
if (e === start) {
while (q = hullPrev[e], orient(x$2, y$2, coords[2 * q], coords[2 * q + 1], coords[2 * e], coords[2 * e + 1])) {
t = this$1._addTriangle(q, i$6, e, -1, hullTri[e], hullTri[q]);
this$1._legalize(t + 2);
hullTri[q] = t;
hullNext[e] = e;
hullSize--;
e = q;
}
}
this$1.hullStart = hullPrev[i$6] = e;
hullNext[e] = hullPrev[n$1] = i$6;
hullNext[i$6] = n$1;
hullHash[this$1._hashKey(x$2, y$2)] = i$6;
hullHash[this$1._hashKey(coords[2 * e], coords[2 * e + 1])] = e;
}
this.hull = new Uint32Array(hullSize);
for (var i$7 = 0, e$1 = this.hullStart; i$7 < hullSize; i$7++) {
this$1.hull[i$7] = e$1;
e$1 = hullNext[e$1];
}
this.hullPrev = this.hullNext = this.hullTri = null;
this.triangles = triangles.subarray(0, this.trianglesLen);
this.halfedges = halfedges.subarray(0, this.trianglesLen);
};
Delaunator.from = function from (points, getX, getY) {
if ( getX === void 0 ) getX = defaultGetX;
if ( getY === void 0 ) getY = defaultGetY;
var n = points.length;
var coords = new Float64Array(n * 2);
for (var i = 0; i < n; i++) {
var p = points[i];
coords[2 * i] = getX(p);
coords[2 * i + 1] = getY(p);
}
return new Delaunator(coords);
};
Delaunator.prototype._hashKey = function _hashKey (x, y) {
return Math.floor(pseudoAngle(x - this._cx, y - this._cy) * this._hashSize) % this._hashSize;
};
Delaunator.prototype._legalize = function _legalize (a) {
var this$1 = this;
var ref = this;
var triangles = ref.triangles;
var coords = ref.coords;
var halfedges = ref.halfedges;
var b = halfedges[a];
var a0 = a - a % 3;
var b0 = b - b % 3;
var al = a0 + (a + 1) % 3;
var ar = a0 + (a + 2) % 3;
var bl = b0 + (b + 2) % 3;
if (b === -1) { return ar; }
var p0 = triangles[ar];
var pr = triangles[a];
var pl = triangles[al];
var p1 = triangles[bl];
var illegal = inCircle(
coords[2 * p0], coords[2 * p0 + 1],
coords[2 * pr], coords[2 * pr + 1],
coords[2 * pl], coords[2 * pl + 1],
coords[2 * p1], coords[2 * p1 + 1]);
if (illegal) {
triangles[a] = p1;
triangles[b] = p0;
var hbl = halfedges[bl];
if (hbl === -1) {
var e = this.hullStart;
do {
if (this$1.hullTri[e] === bl) {
this$1.hullTri[e] = a;
break;
}
e = this$1.hullNext[e];
} while (e !== this.hullStart);
}
this._link(a, hbl);
this._link(b, halfedges[ar]);
this._link(ar, bl);
var br = b0 + (b + 1) % 3;
this._legalize(a);
return this._legalize(br);
}
return ar;
};
Delaunator.prototype._link = function _link (a, b) {
this.halfedges[a] = b;
if (b !== -1) { this.halfedges[b] = a; }
};
Delaunator.prototype._addTriangle = function _addTriangle (i0, i1, i2, a, b, c) {
var t = this.trianglesLen;
this.triangles[t] = i0;
this.triangles[t + 1] = i1;
this.triangles[t + 2] = i2;
this._link(t, a);
this._link(t + 1, b);
this._link(t + 2, c);
this.trianglesLen += 3;
return t;
};
function pseudoAngle(dx, dy) {
var p = dx / (Math.abs(dx) + Math.abs(dy));
return (dy > 0 ? 3 - p : 1 + p) / 4;
}
function dist(ax, ay, bx, by) {
var dx = ax - bx;
var dy = ay - by;
return dx * dx + dy * dy;
}
function orient(px, py, qx, qy, rx, ry) {
return (qy - py) * (rx - qx) - (qx - px) * (ry - qy) < 0;
}
function inCircle(ax, ay, bx, by, cx, cy, px, py) {
var dx = ax - px;
var dy = ay - py;
var ex = bx - px;
var ey = by - py;
var fx = cx - px;
var fy = cy - py;
var ap = dx * dx + dy * dy;
var bp = ex * ex + ey * ey;
var cp = fx * fx + fy * fy;
return dx * (ey * cp - bp * fy) -
dy * (ex * cp - bp * fx) +
ap * (ex * fy - ey * fx) < 0;
}
function circumradius(ax, ay, bx, by, cx, cy) {
var dx = bx - ax;
var dy = by - ay;
var ex = cx - ax;
var ey = cy - ay;
var bl = dx * dx + dy * dy;
var cl = ex * ex + ey * ey;
var d = 0.5 / (dx * ey - dy * ex);
var x = (ey * bl - dy * cl) * d;
var y = (dx * cl - ex * bl) * d;
return x * x + y * y;
}
function circumcenter(ax, ay, bx, by, cx, cy) {
var dx = bx - ax;
var dy = by - ay;
var ex = cx - ax;
var ey = cy - ay;
var bl = dx * dx + dy * dy;
var cl = ex * ex + ey * ey;
var d = 0.5 / (dx * ey - dy * ex);
var x = ax + (ey * bl - dy * cl) * d;
var y = ay + (dx * cl - ex * bl) * d;
return {x: x, y: y};
}
function quicksort(ids, dists, left, right) {
if (right - left <= 20) {
for (var i = left + 1; i <= right; i++) {
var temp = ids[i];
var tempDist = dists[temp];
var j = i - 1;
while (j >= left && dists[ids[j]] > tempDist) { ids[j + 1] = ids[j--]; }
ids[j + 1] = temp;
}
} else {
var median = (left + right) >> 1;
var i$1 = left + 1;
var j$1 = right;
swap(ids, median, i$1);
if (dists[ids[left]] > dists[ids[right]]) { swap(ids, left, right); }
if (dists[ids[i$1]] > dists[ids[right]]) { swap(ids, i$1, right); }
if (dists[ids[left]] > dists[ids[i$1]]) { swap(ids, left, i$1); }
var temp$1 = ids[i$1];
var tempDist$1 = dists[temp$1];
while (true) {
do { i$1++; } while (dists[ids[i$1]] < tempDist$1);
do { j$1--; } while (dists[ids[j$1]] > tempDist$1);
if (j$1 < i$1) { break; }
swap(ids, i$1, j$1);
}
ids[left + 1] = ids[j$1];
ids[j$1] = temp$1;
if (right - i$1 + 1 >= j$1 - left) {
quicksort(ids, dists, i$1, right);
quicksort(ids, dists, left, j$1 - 1);
} else {
quicksort(ids, dists, left, j$1 - 1);
quicksort(ids, dists, i$1, right);
}
}
}
function swap(arr, i, j) {
var tmp = arr[i];
arr[i] = arr[j];
arr[j] = tmp;
}
function defaultGetX(p) {
return p[0];
}
function defaultGetY(p) {
return p[1];
}
return Delaunator;
})));
var renderer, scene, camera, controls, loader, terrain, glsl, uniforms, root, tree;
renderer = new THREE.WebGLRenderer({
antialias: true
});
renderer.setPixelRatio(window.devicePixelRatio);
renderer.setSize(window.innerWidth, window.innerHeight);
renderer.setClearColor(0x000000);
document.body.appendChild(renderer.domElement);
scene = new THREE.Scene();
loader = new THREE.TextureLoader();
loader.crossOrigin = "";
camera = new THREE.PerspectiveCamera(35, window.innerWidth / window.innerHeight, 1, 51200);
camera.position.set(-3072, 2048, -3072);
controls = new THREE.OrbitControls(camera, renderer.domElement);
controls.enableDamping = true;
controls.dampingFactor = 0.05;
controls.screenSpacePanning = false;
controls.minDistance = 8;
controls.maxDistance = 10240;
controls.maxPolarAngle = Math.PI / 2;
//simple pseudo quadtree
var points = [], indices = [], quad_uvs = [], groups = [], materials = [];
getSegmentSubpoints(0, new THREE.Vector3(-1024, 0, -1024), 1024, 1024, 4);
getSegmentSubpoints(1, new THREE.Vector3(0, 0, -1024), 1024, 1024, 4);
getSegmentSubpoints(2, new THREE.Vector3(-1024, 0, 0), 1024, 1024, 4);
getSegmentSubpoints(3, new THREE.Vector3(0, 0, 0), 512, 512, 8);
getSegmentSubpoints(4, new THREE.Vector3(512, 0, 0), 512, 512, 8);
getSegmentSubpoints(5, new THREE.Vector3(0, 0, 512), 512, 512, 8);
getSegmentSubpoints(6, new THREE.Vector3(512, 0, 512), 512, 512, 8);
var geometry = new THREE.BufferGeometry().setFromPoints(points);
geometry.setIndex(indices);
geometry.setAttribute( 'uv', new THREE.BufferAttribute(new Float32Array(quad_uvs), 2 ) );
geometry.computeVertexNormals();
var materials = [];
var colors = [new THREE.Color(0xe6194b), new THREE.Color(0x3cb44b), new THREE.Color(0xffe119), new THREE.Color(0x4363d8), new THREE.Color(0xf58231), new THREE.Color(0x911eb4), new THREE.Color(0x46f0f0) ]
groups.forEach(function(g_, i_){ geometry.addGroup(g_.start, g_.end, g_.id); materials.push(new THREE.MeshBasicMaterial({wireframe: true, color: colors[i_]})) });
var plane = new THREE.Mesh(geometry, materials);
plane.rotation.set(Math.PI, 0, 0);
plane.position.set(-1152, 0, 0);
scene.add(plane);
//delaunay
materials = [];
var geometry = new THREE.BufferGeometry().setFromPoints(points);
var indexDelaunay = Delaunator.from(points.map(v => { return [v.x, v.z]; }) );
var meshIndex = [];
for (let i = 0; i < indexDelaunay.triangles.length; i++){ meshIndex.push(indexDelaunay.triangles[i]); }
geometry.setIndex(meshIndex);
geometry.computeVertexNormals();
count = 0;
for(var i = 0; i < meshIndex.length; i += 6){
geometry.addGroup(i, 6, i / 6);
materials.push(new THREE.MeshBasicMaterial({ wireframe: true, color: new THREE.Color("hsl(" + (360 / 316 * count) + ",80%, 80%)")}))
count++;
}
var plane = new THREE.Mesh(geometry, materials); //new THREE.MeshBasicMaterial({color: 0xFF00FF, side: THREE.DoubleSide, wireframe: true}) );
plane.rotation.set(Math.PI, 0, 0)
plane.position.set(1152, 0, 0);
scene.add(plane);
animate();
function getSegmentSubpoints(id_, lt_, w_, h_, level_){
var subpoints = [];
var subindices = [];
var subquad = [];
var lastIndex = points.length;
var lastIndex2 = indices.length;
var step = {x: w_ / level_, z: h_ / level_ };
var stepT = {x: 1.0 / level_, z: 1.0 / level_ };
for(var z = 0; z <= level_; z++){
for(var x = 0; x <= level_; x++){
var dx = lt_.x + step.x * x;
var dz = lt_.z + step.z * z;
var dy = 0;
subquad.push(...[stepT.x * x, stepT.z * z]);
subpoints.push(new THREE.Vector3(dx, dy, dz));
}
}
for(var i = 0; i < subpoints.length - level_ - 2; i++) {
if(i % (level_ + 1) != (level_)){
subindices.push(lastIndex + i, lastIndex + i + 1, lastIndex + i + level_ + 2, lastIndex + i + level_ + 2, lastIndex + i + level_ + 1, lastIndex + i);
}
}
points.push(...subpoints);
indices.push(...subindices);
quad_uvs.push(...subquad);
groups.push({id: id_, start: lastIndex2, end: subindices.length});
materials.push(new THREE.MeshBasicMaterial({ wireframe: true, map: new THREE.TextureLoader().load("textures/" + id_ + ".jpg")}));
}
function animate(){
controls.update();
renderer.render(scene, camera);
requestAnimationFrame(animate);
}
body { margin: 0; }
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>GLSL Intersection</title>
<meta name="viewport" content="initial-scale=1,maximum-scale=1,user-scalable=no" />
<script src="https://unpkg.com/three#0.116.0/build/three.min.js"></script>
<script src="https://unpkg.com/three#0.116.0/examples/js/controls/OrbitControls.js"></script>
</head>
<body>
</body>
</html>

Maya-like camera implementation

I am working on Maya-like camera implementation, and I've done track and dolly functions correctly but I just cannot implement tumble.
I am working in PhiloGL engine (WebGL base), so I would really appreciate some help with code in this engine.
I've looked at how Maya's camera actually work, but I cannot find out. Here is my code so-far
if(mode == "rot")
{
var angleX = diffx / 150;
var angleY = diffy / 150;
//var angleZ = sign * Math.sqrt((diffx * diffx)+(diffy * diffy)) / 150;
e.stop();
//axe Z
//camera.position.x = x * Math.cos(angleX) - y * Math.sin(angleX);
//camera.position.y = x * Math.sin(angleX) + y * Math.cos(angleX);
//axe X
//camera.position.y = y * Math.cos(angleY) - z * Math.sin(angleY);
//camera.position.z = y * Math.sin(angleY) + z * Math.cos(angleY);
//camera.update();
//axe Y
camera.position.z = z * Math.cos(angleX) - x * Math.sin(angleX);
camera.position.x = z * Math.sin(angleX) + x * Math.cos(angleX);
camera.update();
position.x = e.x;
position.y = e.y;
position.z = e.z;
}
This isn't working nor do I know what am I doing wrong.
Any clues?
I use this in inka3d (www.inka3d.com) but it does not depend on inka3d. The output is a 4x4 matrix. Can you make use of that?
// turntable like camera, y is up-vector
// tx, ty and tz are camera target position
// rx, ry and rz are camera rotation angles (rad)
// di is camera distance from target
// fr is an array where the resulting view matrix is written into (16 values, row major)
control.cameraY = function(tx, ty, tz, rx, ry, rz, di, fr)
{
var a = rx * 0.5;
var b = ry * 0.5;
var c = rz * 0.5;
var d = Math.cos(a);
var e = Math.sin(a);
var f = Math.cos(b);
var g = Math.sin(b);
var h = Math.cos(c);
var i = Math.sin(c);
var j = f * e * h + g * d * i;
var k = f * -e * i + g * d * h;
var l = f * d * i - g * e * h;
var m = f * d * h - g * -e * i;
var n = j * j;
var o = k * k;
var p = l * l;
var q = m * m;
var r = j * k;
var s = k * l;
var t = j * l;
var u = m * j;
var v = m * k;
var w = m * l;
var x = q + n - o - p;
var y = (r + w) * 2.0;
var z = (t - v) * 2.0;
var A = (r - w) * 2.0;
var B = q - n + o - p;
var C = (s + u) * 2.0;
var D = (t + v) * 2.0;
var E = (s - u) * 2.0;
var F = q - n - o + p;
var G = di;
var H = -(tx + D * G);
var I = -(ty + E * G);
var J = -(tz + F * G);
fr[0] = x;
fr[1] = A;
fr[2] = D;
fr[3] = 0.0;
fr[4] = y;
fr[5] = B;
fr[6] = E;
fr[7] = 0.0;
fr[8] = z;
fr[9] = C;
fr[10] = F;
fr[11] = 0.0;
fr[12] = x * H + y * I + z * J;
fr[13] = A * H + B * I + C * J;
fr[14] = D * H + E * I + F * J;
fr[15] = 1.0;
};