Why can't I add nil objects to NSMutableArrays? - objective-c

I have a situation where I'd like to be able to maintain an array of pointers that might all possibly point to nil.
Equipment *equipment[19];
However, I've found that I cannot set an array of pointers, or a double-pointer, as a property of an object.
My workaround when I can't use C-style arrays is to use the NSArray objects. So I attempted to do something like the following:
NSMutableArray *equipment = [NSMutableArray arrayWithCapacity: NUM_EQUIPSLOTS];
for (int i=0; i<NUM_EQUIPSLOTS; i++) {
[equipment setObject: nil atIndexedSubscript: i];
}
The idea here being I have an array of empty pointers that will later point to stuff.
*** Terminating app due to uncaught exception 'NSInvalidArgumentException', reason: '*** -[__NSArrayM insertObject:atIndex:]: object cannot be nil'
*** First throw call stack:
(0x246e012 0x1e4be7e 0x2421b6a 0x2421a20 0xebd02 0xde82b 0xc9d5a 0xcb6bd 0x4d525 0xc94fa 0xc8b6a 0xa18157 0xa18747 0xa1994b 0xa2acb5 0xa2bbeb 0xa1d698 0x3176df9 0x3176ad0 0x23e3bf5 0x23e3962 0x2414bb6 0x2413f44 0x2413e1b 0xa1917a 0xa1affc 0xc8526 0x1fa5)
libc++abi.dylib: terminate called throwing an exception
I know I can do this very easily using C-style arrays, and with individual objects. I'd rather do it this way than something dumb like:
Equipment *equipment0 = nil;
Equipment *equipment1 = nil;
Equipment *equipment2 = nil;
// ...
Equipment *equipment18 = nil;
This probably has to do with the structure of the NSArray model itself. Would someone explain to me why this is, and why I can't simply add or set nil objects in NSArray? Thank you in advance.

The "why" is both trivial and unsatisfying. It is because NSMutableArray holds objects, and nil is not an object. ObjC has a strong distinction between objects and primitive types. nil is a primitive type. As CodaFi notes, you can use NSNull or NSPointerArray to address these. The typical solution is NSNull.

There is no good reason. NSArray and NSMutableArray stores pointers to objects. nil is a decent pointer to an object. The Java equivalent is ArrayList, which does permit null elements. It was just a design choice.
One possible historical reason for this design choice is that the most common way to create an array and fill it with elements is to use the -initWithObjects:... or +arrayWithObjects:... methods, which use varargs to take as many arguments as the user wants to give and put it in the array. Since with varargs in C, it is impossible to determine the number of arguments, the way they chose to indicate how many was to use nil as a "terminator" to signal the end of the list. (There are other ways to indicate the number, e.g. pass the number as the first argument.) The disadvantage of this method was that you cannot put nil as one of the "arguments" that you wanted to put in the array, since it would terminate the list.
However, those methods were not the only ways to create an array and fill it with elements. You could create an empty array and add each one separately, or you could use the -initWithObjects:count: or +arrayWithObjects:count: methods, which are not varargs and thus did not have the nil terminator issue. Now, there is also the array literal syntax (which calls -initWithObjects:count: internally) which makes it even easier. It is perfectly conceivable to have NSArray and NSMutableArray that allows nil elements; just that you cannot use -initWithObjects:... or +arrayWithObjects:... to add the nil elements. However, they chose not to do this.

Related

NSOrderedSet for object pointers only

I need to store a bunch of objects in an NSOrderedSet object.
Unfortunately, I don't want the set to perform any sort of equality checking on anything other than the object pointer itself.
It appears as though some objects (such as NSNumber) override isEqual: and perform internal value comparison, which means that two NSNumber instances with the same value (but different object pointers) cannot be stored in the same ordered set.
How can I work around this issue?
It has occurred to me that I could just store the object pointer itself as an NSValue or NSString object (using #"%p") instead.
However this means that I need to wrap all calls to containsObject: and indexOfObject: and create a new NSValue or NSString object every time I want to query the set.
Is there any better way of handling this?

Why do we create instances of classes in for loops?

So I am busy reading an objective-c book by Big Nerd Ranch. I'm on chapter 17 at the moment and managed to complete the required challenge at the end of the chapter. However, I just have two question that I would like to understand.
In the following bit of code - StockHolding is a custom class that has instance variables and the stocks (an array) points to three instances of stockholding with values setting its stock value and cost in dollars.
At first I tried to access the array to get the data from the objects it pointed to - but it seems that was not going to work as the array doesn't know what data its objects contain - just where they are in memory, right?
What I want to know is why was it necessary to create a new instance of stockholding (holdings) in this for loop to access those variables?
How does the new instance of stockholding know what the values of my stocks are?
for (StockHolding *holdings in stocks){
NSLog (# "%# has %d shares. Cost: $%.2f. Stock value: $%.2f", [holdings stockName],[holdings numberOfShares], [holdings costInDollars], [holdings valueInDollars]);
}
I'm going to try have a guess here to see if maybe I understand it a little better?
We create an instance of our class in the for loop so that we have access to its instance methods and variables - then we use the stocks array to get the variables from those objects in the array?
I may be completely off.. :(
Any advice?
stocks is an array having the objects of type StockHolding
So in order to access all values in the array and print the values.You need to get all the StockHolding instance inside the array we use for ...in method
note Here new instance is not created just new reference is made to the memory that is in the array so that you can access it and use it
Absolutely no new instances are created in the for loop at all. Since Objective-C objects are always represented as pointers, one variable != one instance. The holdings local variable inside the loop is assigned the pointer to the element of the array which is currently being enumerated upon each iteration. It's just a "reference" to an already existing object.
You're not creating new instances. You're iterating through existing instances.
Presumably in [CODE] you have created the objects and added them to the NSArray. The for loop just gives them to you one at a time. You name it holdings, do something with it, then grab the next.
That's all.
In Objective-C objects are typeless. Any message can be sent to any object. Code like [holdings stockName] means "send the message 'stockName' to the object 'holdings'". So the Objective-C runtime will inspect the object to see whether it implements that message. If so then it'll pass execution into the implementation.
The type of your object makes no difference to how processing will occur at runtime.
An NSArray stores anything that conforms to the NSObject protocol. So it can hold any old mix of objects. The same goes for the other collections.
Although you could write all your code without mentioning a single object type, you usually don't because if you say which type of objects you're dealing with then the compiler can perform some sanity checks. That makes you less likely to write broken code.
So the code:
for (StockHolding *holdings in stocks)
just means "let me do something to every object in the collection stocks and don't give me any compiler warnings when I treat them like instances of StockHolding". They may actually be other classes. If they're other classes that implement stockName, numberOfShares and the rest then your code will work perfectly.
So, for example:
NSMutableArray *arrayOfStrings = [NSMutableArray array];
[arrayOfStrings addObject:#"34.3"];
[arrayOfStrings addObject:#"19.8"];
float total;
for(NSNumber *number in arrayOfStrings)
{
total += [number floatValue];
}
Will compile and work perfectly — not because the strings are actually converted to numbers but because both classes implement floatValue to return a float. So each NSNumber *number is actually an NSString, and if you tried to call, say, isEqualToNumber: on any of them you'd raise an exception because that isn't implemented by strings. But telling the compiler you're going to act as if they're numbers means you don't get a warning for using floatValue and when the runtime spots that the object implements floatValue execution continues as usual.
The for..in loop is used for fast enumeration.
This
for (StockHolding *holdings in stocks)
{
}
won't create any new object, it takes one object from array and cast it to the specified type and assign it to the specified variable.
Means:
Takes the object from the array . Equivalent to [stocks objectAtIndex:index];
Assign it to the specified object. Equivalent to StockHolding *holdings = [stocks objectAtIndex:index];
Note that Only the reference is used (assignment) there is no object is allocated.

Are pointers to arguments in Objective C methods are const by default?

There are methods in Cocoa classes that accept an address of a pointer. Most commonly the argument is address of future NSError * object in CoreData validation methods (among others). This way it is possible to put custom or owned object into the place of the address that given argument points to.
My question is: why can't we do that with simple pointer arguments? E.g. let's say I have a method:
- (void)addObject:(id)someObject toArray:(NSMutableArray *)array;
I can easily pass the mutable array as second argument, call addObject: on it and after the method call the array will be modified. Why is this not done with NSError * objects? Are pointers passed to methods are defined as const by default? Is this to avoid accessing NULL?
Why is this not done with NSError * objects?
Because there's no such thing as an NSMutableError. Your example works because you can modify the contents of the array without modifying the pointer to the array itself. However, since NSError instances are immutable, you cannot modify an NSError. As such, you must necessarily create a new error object. And if you want to return that error object along with some other piece of data, at least one of those must be done via an out-parameter (such as an NSError **).
Are pointers passed to methods are defined as const by default?
Nope. Inside that method you're welcome to do this:
- (void)addObject:(id)someObject toArray:(NSMutableArray *)array {
someObject = somethingElse;
[array addObject:someObject];
}
What's important to remember here is that you're only changing a pointer in a slot in memory. The memory slot corresponding to someObject is just a space on the stack, and you're changing the contents of that space to have a value that points to a different allocated object than the one you were given.
Is this to avoid accessing NULL?
Any NULL protection you need must be done yourself.
It's because the NSError class does not define any way to modify instances after creation. The pointer itself is mutable, but an NSError is not.
They are all plain C pointers. They are not const unless you make them const. Const pointers are not a good thing to use in most situations in objective-C, or even often plain C. Const pointers are a subtle concept, and the complexities of the meaning and syntax don't mesh well with the Objective-C style of programming. Forgetting they exist is likely a good first approximation.
Example: NSArray and NSMutableArray - we would not need an NSArray class if const worked 'correctly' - but it can't due to the design of C.
** - For NSError, etc., the idea is to create an NSError, not alter the one you have passed in. In other words, you need a pointer to a pointer to be able to create an instance (i.e. change the actual object).

When and when to not allocate memory to objects

NSArray *array = [dictionary objectForKey:#"field"];
and
NSArray *array = [[NSArray alloc] initWithArray:[dictionary objectForKey:#"field"]];
I see both kind of approaches very frequently in objective C code.
When tried to understand, I found both of them used in similar situation too, which makes contradiction. I am not clear on when I should use 1st approach and when 2nd one?
Any idea?
Detailed explanation and useful references are moms welcome.
First off, those two examples are doing slightly different things. One is retrieving something from an existing dictionary and one is creating a new array by retrieving something from an existing dictionary (the value of that key is an array).
But, if you're asking the difference between getting objects by alloc vs. convenience methods. ([NSString alloc] init vs [NSString stringWith ...), by convention, you own anything that you call alloc, new copy or mutableCopy on. Anything that you call that is not those, is autoreleased.
See the memory guide here. Specifically, look at the rules.
Getting an autoreleased object means it will go away at some point in the near future. If you don't need to hold onto outside the scope of that function, then you can call autorelease on it or use one of the convenience methods that's not alloc, etc...
For example:
// my object doesn't need that formatted string - create the autoreleased version of it.
- (NSString) description {
return [NSString stringWithFormat:#"%# : %d", _title, _id];
}
// my object stuffed it away in an iVar - I need the retained version of it. release in dealloc
- (void) prepare {
_myVal = [[NSString alloc] initWithFormat:"string I need for %d", _id];
}
In the first example, I created a convenience methods for others to call, my class doesn't need that object beyond the scope of that method so I create the autoreleased version of it and return it. If the caller needs it beyond the scope of his calling method, he can retain it. If not he can use it and let it go away. Very little code.
In the second example, I'm formatting a string and assigning it to an iVar variable that I need to hold onto for the lifetime of my class so I call alloc which will retain it. I own it and releasing it eventually. Now, I could have used the first version here and just called retain on it as well.
You have a fundamental misunderstanding of allocations versus instance methods.
The first example, NSDictionary's -objectForKey method, returns id, not an instance of NSDictionary, therefore it does not allocate or initialize the variable.
The second, however is the classic retain part of the retain-release cycle.
The two methods are fundamentally equal (if we are to assume that array is alloc'd but empty in the first, and nil in the second), and both get ownership of the array object. I would go with the second, as it guarantees a reference, and it's shorter.
What I think you're confusing this with are new and convenience methods. Convenience methods (like NSNumber's +numberWithInt:, NSString's +stringWithFormat:, and NSMutableArray's +array), return an autorelease instance of the class (usually). New takes the place of alloc and init in just one word.

Cocoa: Testing to find if an NSString is immutable or mutable?

This produces an immutable string object:
NSString* myStringA = #"A"; //CORRECTED FROM: NSMutableString* myStringA = #"A";
This produces a mutable string object:
NSMutableString* myStringB = [NSMutableString stringWithString:#"B"];
But both objects are reported as the same kind of object, "NSCFString":
NSLog(#"myStringA is type: %#, myStringB is type: %#",
[myStringA class], [myStringB class]);
So what is distinguishing these objects internally, and how do I test for that, so that I can easily determine if a mystery string variable is immutable or mutable before doing something evil to it?
The docs include a fairly long explanation on why Apple doesn't want you to do this and why they explicitly do not support it in Receiving Mutable Objects. The summary is:
So don’t make a decision on object
mutability based on what introspection
tells you about an object. Treat
objects as mutable or not based on
what you are handed at the API
boundaries (that is, based on the
return type). If you need to
unambiguously mark an object as
mutable or immutable when you pass it
to clients, pass that information as a
flag along with the object.
I find their NSView example the easiest to understand, and it illustrates a basic Cocoa problem. You have an NSMutableArray called "elements" that you want to expose as an array, but don't want callers to mess with. You have several options:
Expose your NSMutableArray as an NSArray.
Always make a non-mutable copy when requested
Store elements as an NSArray and create a new array every time it mutates.
I've done all of these at various points. #1 is by far the simplest and fastest solution. It's also dangerous, since the array might mutate behind the caller's back. But Apple indicates it's what they do in some cases (note the warning for -subviews in NSView). I can confirm that while #2 and #3 are much safer, they can create major performance problems, which is probably why Apple has chosen not to use them on oft-accessed members like -subviews.
The upshot of all of this is that if you use #1, then introspection will mislead you. You have an NSMutableArray cast as an NSArray, and introspection will indicate that it's mutable (introspection has no way to know otherwise). But you must not mutate it. Only the compile-time type check can tell you that, and so it's the only thing you can trust.
The fix for this would be some kind of fast copy-on-write immutable version of a mutable data structure. That way #2 could possibly be done with decent performance. I can imagine changes to the NSArray cluster that would allow this, but it doesn't exist in Cocoa today (and could impact NSArray performance in the normal case, making it a non-starter). Even if we had it, there's probably too much code out there that relies on the current behavior to ever allow mutability introspection to be trusted.
There's no (documented) way to determine if a string is mutable at runtime or not.
You would expect one of the following would work, but none of them work:
[[s class] isKindOfClass:[NSMutableString class]]; // always returns false
[s isMemberOfClass:[NSMutableString class]]; // always returns false
[s respondsToSelector:#selector(appendString)]; // always returns true
More info here, although it doesn't help you with the problem:
http://www.cocoabuilder.com/archive/cocoa/111173-mutability.html
If you want to check for debugging purposes the following code should work. Copy on immutable object is itself, while it's a true copy for mutable types, that's what the code is based on. Note that since it's calling copy it's slow, but should be fine for debugging. If you'd like to check for any other reasons than debugging see Rob answer (and forget about it).
BOOL isMutable(id object)
{
id copy = [object copy];
BOOL copyIsADifferentObject = (copy != object);
[copy release];
return copyIsADifferentObject;
}
Disclaimer: of course there is no guarantee that copy is equivalent with retain for immutable types. You can be sure that if isMutable returns NO then it's not mutable so the function should be probably named canBeMutable. In the real world however, it's a pretty safe assumption that immutable types (NSString,NSArray) will implement this optimization. There is a lot of code out including basic things like NSDictionary that expects fast copy from immutable types.