Is there any way to delegate to two objects at a time in Objective-C? I know that delegation pattern implies one response at a time and for multiple listeners and broadcasting there is notification center but notification does not return any value.
If I have a heavily network-based iOS project and need to delegate to multiple listeners and required to return values from them, in this scenario what approach should be the best?
In every class the delegate is one, so one delegate is informed about the event. But nothing forbids you to declare a class with a set of delegates.
Or use Observation instead. A class may be observed by multiple classes.
Example
As requested from the OP, since also some code would be useful, here is a way of doing it:
#interface YourClass()
#property (nonatomic, strong, readwrite) NSPointerArray* delegates;
// The user of the class shouldn't even know about this array
// It has to be initialized with the NSPointerFunctionsWeakMemory option so it doesn't retain objects
#end
#implementation YourClass
#synthesize delegates;
... // other methods, make sure to initialize the delegates set with alloc-initWithOptions:NSPointerFunctionsWeakMemory
- (void) addDelegate: (id<YourDelegateProtocol>) delegate
{
[delegates addPointer: delegate];
}
- (void) removeDelegate: (id<YourDelegateProtocol>) delegate
{
// Remove the pointer from the array
for(int i=0; i<delegates.count; i++) {
if(delegate == [delegates pointerAtIndex: i]) {
[delegates removePointerAtIndex: i];
break;
}
} // You may want to modify this code to throw an exception if no object is found inside the delegates array
}
#end
This is a very simple version, you can do it in another way. I don't suggest to make public the delegates set, you never know how it could be used, and you can get an inconsistent state, specially with multithreading. Also, when you add/remove a delegate you may need to run additional code, so that's why making the delegates set private.
You may also a lot of other methods like delegatesCount for example.
PS: The code has been edited to be a NSPointerArray instead of a NSMutableSet, because as stated in the comments a delegate should be held with a weak pointer to avoid retain cycles.
In addition to Ramys answer you could use a [NSHashTable weakObjectsHashTable] instead of a
NSMutableSet. This would keep only a weak reference to your delegates and prevents you from running into memory leaks.
You will get the same behavior you already know from standard weak delegates #property (nonatomic, weak) id delegate;
#interface YourClass()
#property (nonatomic, strong) NSHashTable *delegates;
#end
#implementation YourClass
- (instancetype)init
{
self = [super init];
if (self) {
_delegates = [NSHashTable weakObjectsHashTable];
}
return self;
}
- (void) addDelegate: (id<YourDelegateProtocol>) delegate
{
// Additional code
[_delegates addObject: delegate];
}
// calling this method is optional, because the hash table will automatically remove the delegate when it gets released
- (void) removeDelegate: (id<YourDelegateProtocol>) delegate
{
// Additional code
[_delegates removeObject: delegate];
}
#end
Robbie Hanson wrote a multicast delegate implementation. Looks like what you need. He talks about it in more detail here, and how it is used in the XMPPFramework. He has some good discussion about one of the main problems which is how to handle the case where the multiple delegates implement a given method who's return value determines the class' behaviour (and the multiple delegates return different values). Relevant bits:
What is a MulticastDelegate?
The xmpp framework needs to support an unlimited number of extensions.
This includes the official extensions that ship with the framework, as
well as any number of extensions or custom code you may want to plug
into the framework. So the traditional delegate pattern simply won't
work. XMPP modules and extensions need to be separated into their own
separate classes, yet each of these classes needs to receive delegate
methods. And the standard NSNotification architecture won't work
either because some of these delegates require a return variable.
(Plus it's really annoying to extract parameters from a notification's
userInfo dictionary.)
So a MulticastDelegate allows you to plug into the framework using the
standard delegate paradigm, but it allows multiple classes to receive
the same delegate notifications. The beauty of this is that you don't
have to put all your xmpp handling code in a single class. You can
separate your handling into multiple classes, or however you see fit.
If you're writing the function that will call the delegates, you can have as many as you want. But if you're using a class (that you can't change) that calls the delegates, then you can't have more delegates than the class supports.
You could, if it worked out for you, have one delegate call another. Set up the first delegate so it will call the second delegate (whose pointer is stored in the first delegate object). This can be simple, with it pre-defined as to which calls are "passed on", or quite complex, using the dynamic call mechanisms of Objective-C.
One delegate can be setting for only one object but it's possible to store delegates in array.
Variant of Ramy Al Zuhouri is good but I want to say that it may be a problem to release delegates from array because NSArray (like NSMutableArray) classes retain all added objects but delegate in most cases is an assign property without retainCount. Retaining the delegate can bring to consequences that class with delegate implementation will have retainCount + 1.
Solution of this is store delegates in NSMutableArray like pointers to delegate methods.
I'm using singletone class with delegate header.
//YourClass.h file
#protocol YourDelegateProtocol <NSObject>
-(void)delegateMethod;
#end
#interface YourClass : NSObject
+(YourClass *)sharedYourClass;
- (void) addDelegate: (id<YourDelegateProtocol>) delegate;
- (void) removeDelegate: (id<YourDelegateProtocol>) delegate
#end
//YourClass.m file
#interface YourClass()
#property (nonatomic, retain) NSMutableArray *delegates;
-(void)runAllDelegates;
#end
#implementation YourClass
#synthesize delegates = _delegates;
static YourClass *sharedYourClass = nil;
+(YourClass *)sharedYourClass {
if (!sharedYourClass || sharedYourClass == nil) {
sharedYourClass = [YourClass new];
sharedYourClass.delegates = [NSMutableArray array];
}
return sharedYourClass;
}
-(void)addDelegate: (id<YourDelegateProtocol>) delegate{
NSValue *pointerToDelegate = [NSValue valueWithPointer:delegate];
[_delegates addObject: pointerToDelegate];
}
-(void)removeDelegate: (id<YourDelegateProtocol>) delegate{
NSValue *pointerToDelegate = [NSValue valueWithPointer:delegate];
[_delegates removeObject: pointerToDelegate];
}
-(void)runAllDelegates{
//this method will run all delegates in array
for(NSValue *val in sharedYourClass.delegates){
id<YourDelegateProtocol> delegate = [val pointerValue];
[delegate delegateMethod];
}
}
-(void)dealloc{
sharedYourClass.delegates =nil;
[sharedYourClass release], sharedYourClass =nil;
[super dealloc];
}
#end
//YourClassWithDelegateImplementation.h file
#include "YourClass.h"
#interface YourClassWithDelegateImplementation : NSObject <YourDelegateProtocol>
#end
//YourClassWithDelegateImplementation.m file
#implementation YourClassWithDelegateImplementation
-(id)init{
self = [super init];
if(self){
//...your initialization code
[[YourClass sharedYourClass] addDelegate:self];
}
return self;
}
-(void)delegateMethod{
//implementation of delegate
}
-(void)dealloc{
[[YourClass sharedYourClass] removeDelegate:self];
[super dealloc];
}
#end
If you want to call callbacks for classes B and C from a class A with only one delegate, you could create a delegate wrapper DWrap which has references to the classes B and C. Then class A calls the callbacks on B and C through DWrap.
Related
Is there any way to use the ObjC runtime library, or Cocoa, to be notified when an object is created, for example, after it returns from the init method?
I want to achieve this without modifying the object, or subclassing it (no subclass on NSObject, for example) and without method swizzling (I already know how to do that).
There is no sanctioned way to be notified when a method executes, unless it specifically notes that it returns a notification, or a pointer to some kind of callback, a block, etc. While swizzling may be one way of going about it, proxying is probably your best bet. Instead of messing with the selector for an entire class, you interpose yourself "as" the class by implementing all its properties and/or forwarding selectors to the target object. In this way, NSProxy and subclasses can be used as wrappers around normal objects, meaning you can respond to any kind of method that happens to be sent through your proxy before forwarding it on to the target. A simple proxy can be modeled after the sample below:
FOUNDATION_EXPORT NSString *const CFIProxyDidInitializeTargetNotification;
#interface CFIObjectProxy : NSProxy {
__strong Foo *_target;
}
- (id)init;
#property(nonatomic, readonly, retain) NSArray* bars;
#end
//...
#import "CFIObjectProxy.h"
NSString *const CFIProxyDidInitializeTargetNotification = #"CFIProxyDidInitializeTargetNotification";
#implementation CFIObjectProxy
- (id)init {
_target = [[Foo alloc]init];
[NSNotificationCenter.defaultCenter postNotificationName:CFIProxyDidInitializeTargetNotification object:nil];
return self;
}
- (void)forwardInvocation:(NSInvocation *)invocation {
[invocation invokeWithTarget:_target];
}
- (NSMethodSignature *)methodSignatureForSelector:(SEL)sel {
return [_target methodSignatureForSelector:sel];
}
- (NSString *)description {
return [_target description];
}
- (NSString *)debugDescription {
return [NSString stringWithFormat:#"<%#:%p> Proxy for Object: %#", NSStringFromClass(self.class), self, _target];
}
- (NSArray*)bars {
return [_target bars];
}
#end
Per default, the runtime doesn't record this. I think I'd use swizzling BUT as you don't want this... I think that CodaFi's idea of wrapping the object in a proxy is best ALTHOUGH this is only an option for allocations you manually do AFAICS
so if you want it to be truly transparent, swizzle after all I'd say
you have a class or ViewController using model/service class like so:
#interface MainViewController : UIViewController <TweetServiceDelegate> {
NSArray *_tweets;
}
#property (nonatomic, strong) TweetService *tweetService;
#end
#implementation MainViewController
- (void)viewDidLoad {
[super viewDidLoad];
[self.twitterService queryForLatestTweets];
}
// delegate methods the tweetservice calls back after async getting data
- (void)querySucceededWithTweets:(NSArray *)tweets {
_tweets = [tweets copy];
}
#end
The reason I ask because the Service has a weak reference to the delegate, which is the ViewController.
So I know with ARC you don't want 2 things that use each other to both have a strong reference, so if it's weak but the ViewController retains the NSArray, then the Service wouldn't be collected once it went out of scope, assuming the service did go out of scope but the ViewController didn't
#interface TweetService
#property (nonatomic, weak) id<TweetServiceDelegate> delegate;
#end
#implementation TweetService
- (void)queryForLatestTweets {
// do the query with AFNetworking, when succeed block fires, call the delegate
[self.delegate querySucceededWithTweets:arrayOfTweets];
}
#end
I would say this is rather the recommended way of doing this sort of things. The service is held strongly by the controller that needs it, but the service holds the controller only weakly as a delegate because it does not need to know what its delegate is -- or even if it exists -- to function.
When the service returns something through delegate methods back to its delegate, the delegate should claim ownership of the data. The preferred way is to copy, since the delegate does not know anything about the return value's lifecycle. copy makes a new instance that can be think as a "snapshot" of the data. Working on this "snapshot" guarantees that your data are not modified when you don't want them to. This effectively decouples the service and the delegate.
A side note: Your self._tweets won't work because _tweets is an instance variable, but the dot syntax expects a property. _tweets = [tweets copy]; would be correct.
I will say YES it is good to use because...
if you are not copying that array just simply assign _tweet = tweet array.
then if you are doing change in any one of the array it will affect to other array..
so Yes i will suggest you to use COPY method such time...
Thanks.
I'm developing an app in Objective-C using ARC.
My simplified code looks like this:
ClassA (.m)
MyCustomClass *obj = [[MyCustomClass alloc] initWithValue1:#"abc" value2:1000];
MyViewController *vc = [[MyViewController alloc] initWithObject:obj];
// "vc" will become the first item of a UITabBarController
MyViewController (.h)
- (id)initWithObject:(MyCustomClass *)obj {
...
localReferenceToOjbect = obj;
...
}
- (void)viewWillAppear:(BOOL)animated {
// do something with "localRefernceToObject" <---
}
launching the app will result in a call to a zombie: when the ViewController is shown, the "obj" will be already deallocated and so i can't use it anymore.
my workaround is:
ClassA (.h)
#interface ClassA : UIViewController {
MyCustomClass *obj;
}
ClassA (.m)
obj = [[MyCustomClass alloc] initWithValue1:#"abc" value2:1000];
MyViewController *vc = [[MyViewController alloc] initWithObject:obj];
// "vc" will become the first item of a UITabBarController
is this the right way?! i don't think so: why i've to store an istance of an object that is useless for ClassA?
i can't get an explanation on what's actually happening. could you help me?
You're right in the fact that it is not logical to keep around a reference to obj in ClassA.
But if you need to keep around the reference to obj for MyViewController to use it, retain it in MyViewController, not in ClassA, because that's MyViewController that will use it.
The easiest way to do this is to transform your localReferenceToObject you use in MyViewController into a #property(retain) propertyToObject; (or #property(strong) propertyToObject if you use ARC) and access it in your MyViewController.m with self.propertyToObject (instead of localReferenceToObject, to be sure to call the property's setter and thus really retain the object).
This way, the object will be retained and kept around while your MyViewController instance is still alive.
[EDIT] If you want this property to be private, you can declare it in the class extension so that it is not accessible from other classes, as in the below example. See here in Apple's documentation for more details.
In your MyViewController.h header file
#interface MyViewController : UIViewController
// Here you write the public API in the .h / public header
// If you don't want your property to be visible, don't declare it there
#end
In your MyViewController.m file
#interface MyViewController ()
// This is the private API, only visible inside the MyViewController.m file and not from other classes
// Note the "()" to declare the class extension, as explained in Apple doc
#property(nonatomic, retain) MyCustomClass* referenceToObject; // Note: use strong (which is a synonym of retain) if you use ARC
#end
#implementation MyViewController
#synthesize referenceToObject = _referenceToObject; // not even needed with modern ObjC and latest LLVM compiler
- (id)initWithObject:(MyCustomClass *)obj
{
self = [super init];
if (self) {
...
self.referenceToOjbect = obj;
...
}
return self;
}
- (void)viewWillAppear:(BOOL)animated {
[super viewWillAppear:animated];
// do something with "self.refernceToObject"
}
// This memory management code is only needed if you don't use ARC
-(void)dealloc
{
self.referenceToObject = nil; // release memory
[super dealloc];
}
Personally, as suggested by Apple in some WWDC sessions, I now really rarely use instance variables and prefer the use of properties instead, either public in the .h or private in the .m.
If you use ARC, you can still use an instance variable instead of a property as ARC will retain it for you, but as long as you make sure your instance variable is declared as strong and not weak.
I have a situation where it seems like I need to add instance variables to a category, but I know from Apple's docs that I can't do that. So I'm wondering what the best alternative or workaround is.
What I want to do is add a category that adds functionality to UIViewControllers. I would find it useful in all my different UIViewControllers, no matter what specific UIViewController subclass they extend, so I think a category is the best solution. To implement this functionality, I need several different methods, and I need to track data in between them, so that's what led me to wanting to create instance methods.
In case it's helpful, here's what I specifically want to do. I want to make it easier to track when the software keyboard hides and shows, so that I can resize content in my view. I've found that the only way to do it reliably is to put code in four different UIViewController methods, and track extra data in instance variables. So those methods and instance variables are what I'd like to put into a category, so I don't have to copy-paste them each time I need to handle the software keyboard. (If there's a simpler solution for this exact problem, that's fine too--but I would still like to know the answer to category instance variables for future reference!)
Yes you can do this, but since you're asking, I have to ask: Are you absolutely sure that you need to? (If you say "yes", then go back, figure out what you want to do, and see if there's a different way to do it)
However, if you really want to inject storage into a class you don't control, use an associative reference.
Recently, I needed to do this (add state to a Category). #Dave DeLong has the correct perspective on this. In researching the best approach, I found a great blog post by Tom Harrington. I like #JeremyP's idea of using #property declarations on the Category, but not his particular implementation (not a fan of the global singleton or holding global references). Associative References are the way to go.
Here's code to add (what appear to be) ivars to your Category. I've blogged about this in detail here.
In File.h, the caller only sees the clean, high-level abstraction:
#interface UIViewController (MyCategory)
#property (retain,nonatomic) NSUInteger someObject;
#end
In File.m, we can implement the #property (NOTE: These cannot be #synthesize'd):
#implementation UIViewController (MyCategory)
- (NSUInteger)someObject
{
return [MyCategoryIVars fetch:self].someObject;
}
- (void)setSomeObject:(NSUInteger)obj
{
[MyCategoryIVars fetch:self].someObject = obj;
}
We also need to declare and define the class MyCategoryIVars. For ease of understanding, I've explained this out of proper compilation order. The #interface needs to be placed before the Category #implementation.
#interface MyCategoryIVars : NSObject
#property (retain,nonatomic) NSUInteger someObject;
+ (MyCategoryIVars*)fetch:(id)targetInstance;
#end
#implementation MyCategoryIVars
#synthesize someObject;
+ (MyCategoryIVars*)fetch:(id)targetInstance
{
static void *compactFetchIVarKey = &compactFetchIVarKey;
MyCategoryIVars *ivars = objc_getAssociatedObject(targetInstance, &compactFetchIVarKey);
if (ivars == nil) {
ivars = [[MyCategoryIVars alloc] init];
objc_setAssociatedObject(targetInstance, &compactFetchIVarKey, ivars, OBJC_ASSOCIATION_RETAIN_NONATOMIC);
[ivars release];
}
return ivars;
}
- (id)init
{
self = [super init];
return self;
}
- (void)dealloc
{
self.someObject = nil;
[super dealloc];
}
#end
The above code declares and implements the class which holds our ivars (someObject). As we cannot really extend UIViewController, this will have to do.
I believe it is now possible to add synthesized properties to a category and the instance variables are automagically created, but I've never tried it so I'm not sure if it will work.
A more hacky solution:
Create a singleton NSDictionary which will have the UIViewController as the key (or rather its address wrapped as an NSValue) and the value of your property as its value.
Create getter and setter for the property that actually goes to the dictionary to get/set the property.
#interface UIViewController(MyProperty)
#property (nonatomic, retain) id myProperty;
#property (nonatomic, readonly, retain) NSMutableDcitionary* propertyDictionary;
#end
#implementation UIViewController(MyProperty)
-(NSMutableDictionary*) propertyDictionary
{
static NSMutableDictionary* theDictionary = nil;
if (theDictionary == nil)
{
theDictioanry = [[NSMutableDictionary alloc] init];
}
return theDictionary;
}
-(id) myProperty
{
NSValue* key = [NSValue valueWithPointer: self];
return [[self propertyDictionary] objectForKey: key];
}
-(void) setMyProperty: (id) newValue
{
NSValue* key = [NSValue valueWithPointer: self];
[[self propertyDictionary] setObject: newValue forKey: key];
}
#end
Two potential problems with the above approach:
there's no way to remove keys of view controllers that have been deallocated. As long as you are only tracking a handful, that shouldn't be a problem. Or you could add a method to delete a key from the dictionary once you know you are done with it.
I'm not 100% certain that the isEqual: method of NSValue compares content (i.e. the wrapped pointer) to determine equality or if it just compares self to see if the comparison object is the exact same NSValue. If the latter, you'll have to use NSNumber instead of NSValue for the keys (NSNumber numberWithUnsignedLong: will do the trick on both 32 bit and 64 bit platforms).
This is best achieved using the built-in ObjC feature Associated Objects (aka Associated References), in the example below just change to your category and replace associatedObject with your variable name.
NSObject+AssociatedObject.h
#interface NSObject (AssociatedObject)
#property (nonatomic, strong) id associatedObject;
#end
NSObject+AssociatedObject.m
#import <objc/runtime.h>
#implementation NSObject (AssociatedObject)
#dynamic associatedObject;
- (void)setAssociatedObject:(id)object {
objc_setAssociatedObject(self, #selector(associatedObject), object, OBJC_ASSOCIATION_RETAIN_NONATOMIC);
}
- (id)associatedObject {
return objc_getAssociatedObject(self, #selector(associatedObject));
}
See here for the full tutorial:
http://nshipster.com/associated-objects/
It mentioned in many document's online that you can't create create new variable in category but I found a very simple way to achieve that. Here is the way that let declare new variable in category.
In Your .h file
#interface UIButton (Default)
#property(nonatomic) UIColor *borderColor;
#end
In your .m file
#import <objc/runtime.h>
static char borderColorKey;
#implementation UIButton (Default)
- (UIColor *)borderColor
{
return objc_getAssociatedObject(self, &borderColorKey);
}
- (void)setBorderColor:(UIColor *)borderColor
{
objc_setAssociatedObject(self, &borderColorKey,
borderColor, OBJC_ASSOCIATION_RETAIN_NONATOMIC);
self.layer.borderColor=borderColor.CGColor;
}
#end
That's it now you have the new variable.
Why not simply create a subclass of UIViewController, add the functionality to that, then use that class (or a subclass thereof) instead?
Depending on what you're doing, you may want to use Static Category Methods.
So, I assume you've got this kind of problem:
ScrollView has a couple of textedits in them. User types on text edit, you want to scroll the scroll view so the text edit is visible above the keyboard.
+ (void) staticScrollView: (ScrollView*)sv scrollsTo:(id)someView
{
// scroll view to someviews's position or some such.
}
returning from this wouldn't necessarily require the view to move back, and so it doesn't need to store anything.
But that's all I can thinkof without code examples, sorry.
I believe it is possible to add variables to a class using the Obj-C runtime.
I found this discussion also.
I have read a number of snippets that mention you should never use dot-notation within your init or dealloc methods. However, I can never seem to find out why. One post did mention in passing that it has to do with KVO, but no more.
#interface MyClass : NSObject {
SomeObject *object_;
}
#property (nonatomic, retain) SomeObject *object;
#end
This implementation is bad?
#implementation MyClass
#synthesize object = object_;
- (id)initWithObject:(SomeObject *)object {
if (self = [super init]) {
self.object = object;
}
return self;
}
#end
But this is good?
#implementation MyClass
#synthesize object = object_;
- (id)initWithObject:(SomeObject *)object {
if (self = [super init]) {
object_ = [object retain];
}
return self;
}
#end
What are the pitfalls of using dot-notation inside your init?
Firstly, it's not the dot notation specifically, it's the accessors that you shouldn't use.
self.foo = bar;
is identical to
[self setFoo: bar];
and they are both frowned upon within init/dealloc.
The main reason why is because a subclass might override your accessors and do something different. The subclass's accessors might assume a fully initialised object i.e. that all the code in the subclass's init method has run. In fact, none of it has when your init method is running. Similarly, the subclass's accessors may depend on the subclass's dealloc method not having run. This is clearly false when your dealloc method is running.
The reasons I've heard mainly crop up due to when you write your own setters/getters. When using the default #synthesized versions of the methods it won't cause much of an issue. When you write your own setter though, it is generally going to have a sideeffect on your class. This sideeffect is probably not wanted in the init, or even is going to cause issues if it references other ivars that haven't been created yet. Same issue in the dealloc, if you have a sideeffect, it has potential to blow up.