TinyOS periodic Bcast AMSend not received - objective-c

I want to send messages periodically through this program, the messages are broadcasted fine and I get a sendDone message. The problem is that these messages are not received well. I would really appreciate any help to find out where the problem is?
Here is the code(please ignore unused variables as I have cut a lot of the code):
includes lqer;
module lqer_M{
provides {
interface SplitControl;
interface AMSend[am_id_t id];
interface Receive[uint8_t id];
};
uses {
interface SplitControl as AMControl;
interface Timer<TMilli> as LQERTimer;
interface Random;
interface AMPacket;
interface AMSend as SendPacket;
interface Receive as ReceivePacket;
interface PacketAcknowledgements;
interface Packet;
}
}
implementation{
message_t lqer_msg_;
message_t* p_lqer_msg_;
lqer_table l_table[LQER_FT_SIZE];
node_info info;
uint8_t max=0, Pos=0;
message_t* newADV;
bool busy = FALSE;
command error_t SplitControl.start() {
int i,j;
p_lqer_msg_ = &lqer_msg_;
info.hop=1000;
for(i=0; i<16; i++){
info.m[i]=1;
}
for(i = 0; i< LQER_FT_SIZE; i++) {
l_table[i].nid = INVALID_NODE_ID;
l_table[i].hop = 1000;
for (j=0; j<16; j++)
{
l_table[i].m[j]=1;
}
}
call AMControl.start();
return SUCCESS;
}
command error_t SplitControl.stop() {
call AMControl.stop();
return SUCCESS;
}
event void AMControl.startDone( error_t e ) {
if ( e == SUCCESS ) {
call LQERTimer.startPeriodic( LQER_DEFAULT_PERIOD );
signal SplitControl.startDone(e);
} else {
call AMControl.start();
}
}
event void AMControl.stopDone(error_t e){
call LQERTimer.stop();
signal SplitControl.stopDone(e);
}
event void LQERTimer.fired() {
message_t* lqer_adv_msg;
lqer_adv_hdr* new_ADV=(lqer_adv_hdr*)(lqer_adv_msg->data);
am_addr_t me = call AMPacket.address();
if (me==0001){
new_ADV->src = me;
new_ADV->hop = 0;
newADV= (message_t*)(&new_ADV);
dbg("GRAPE_DBG", "%s\t LQER: Sink address: %d\n", sim_time_string(), me);
call PacketAcknowledgements.requestAck(newADV);
call SendPacket.send( AM_BROADCAST_ADDR, newADV, call Packet.payloadLength(newADV) );
}
}
event message_t* ReceivePacket.receive( message_t* p_msg, void* payload, uint8_t len ) {
lqer_adv_hdr* lqer_hdr = (lqer_adv_hdr*)(p_msg->data);
lqer_adv_hdr* msg_lqer_hdr =(lqer_adv_hdr*)(p_lqer_msg_->data);
uint8_t i;
lqer_adv_hdr* new_ADV =(lqer_adv_hdr*)(p_lqer_msg_->data);
dbg("GRAPE_DBG", "%s\t ADV: RecievedADV dst: \n", sim_time_string());
msg_lqer_hdr->src = lqer_hdr->src;
msg_lqer_hdr->hop = lqer_hdr->hop;
new_ADV->src = msg_lqer_hdr->src;
new_ADV->hop = msg_lqer_hdr->hop;
newADV= (message_t*)(&new_ADV);
call PacketAcknowledgements.requestAck( newADV );
call SendPacket.send( AM_BROADCAST_ADDR, newADV, call Packet.payloadLength(newADV) );
return p_msg;
}
command error_t AMSend.cancel[am_id_t id](message_t* msg) {
return call SendPacket.cancel(msg);
}
command uint8_t AMSend.maxPayloadLength[am_id_t id]() {
return call Packet.maxPayloadLength();
}
command void* AMSend.getPayload[am_id_t id](message_t* m, uint8_t len) {
return call Packet.getPayload(m, 0);
}
default event void AMSend.sendDone[uint8_t id](message_t* msg, error_t err) {
return;
}
default event message_t* Receive.receive[am_id_t id](message_t* msg, void* payload, uint8_t len) {
return msg;
}
command error_t AMSend.send[am_id_t id](am_addr_t addr, message_t* msg, uint8_t len)
{
call SendPacket.send( TOS_BCAST_ADDR , msg, call Packet.payloadLength(msg) );
return SUCCESS;
}
event void SendPacket.sendDone(message_t* p_msg, error_t e) {
dbg("GRAPE_DBG", "%s\t ADV: SendDone\n", sim_time_string());
if( p_msg== newADV)
busy=FALSE;
}
}

You should look at what is the error value in the sendDone event. It is possible that send returns success, but the sending fail after that, and the error code is returned in the sendDone. These error includes ENOACK, ENOMEM, etc.
Also, check your destination address and the AM address of the receiver.

Related

How to pass custom buffer to windows runtime methods

I am trying to pass my custom buffer to WinRT objects that take IBuffer as argument. Here is what I have so far;
static const uint32_t ARRAY_SIZE = 4096;
struct ArrayBuffer : implements<ArrayBuffer, IBuffer, winrt::impl::IBufferByteAccess>
{
uint32_t Capacity() const { return ARRAY_SIZE; }
uint32_t Length() const { return length; }
void Length(uint32_t value)
{
if (value > ARRAY_SIZE)
throw hresult_invalid_argument();
length = value;
}
int32_t __stdcall Buffer(uint8_t** value)
{
*value = &data[0];
return 0;
}
private:
uint32_t length = 0;
uint8_t data[ARRAY_SIZE];
};
I am trying to use it like this;
fire_and_forget WebSocketServer::readLoop(StreamSocket socket)
{
IBuffer buffer = make<ArrayBuffer>();
auto istream = socket.InputStream();
while (true)
{
try
{
co_await istream.ReadAsync(buffer, ARRAY_SIZE, InputStreamOptions::None);
}
catch (hresult_error const& ex)
{
hresult hr = ex.code();
hstring message = ex.message();
}
if (buffer.Length() == 0)
break;
buffer.Length(0);
}
}
However, I am getting hresult_no_interface exception when I call ReadAsync method.

Asio SSL full-duplex socket synchronization problem

My MVCE for SSL relay server:
#pragma once
#include <stdint.h>
#include <iostream>
#include <asio.hpp>
#include <asio/ssl.hpp>
namespace test
{
namespace setup
{
const uint32_t maxMessageSize = 1024 * 1024;
const uint32_t maxSessionsNum = 10;
}
enum class MessageType
{
LOG_ON = 0,
TEXT_MESSAGE = 1
};
class MessageHeader
{
public:
uint32_t messageType;
uint32_t messageLength;
MessageHeader(uint32_t messageType, uint32_t messageLength) : messageType(messageType), messageLength(messageLength) {}
};
class LogOn
{
public:
MessageHeader header;
uint32_t sessionId;
uint32_t isClient0;
LogOn() : header((uint32_t)MessageType::LOG_ON, sizeof(LogOn)) {}
};
class TextMessage
{
public:
MessageHeader header;
uint8_t data[];
TextMessage() : header((uint32_t)MessageType::TEXT_MESSAGE, sizeof(TextMessage)){}
};
class ClientSocket;
class Session
{
public:
ClientSocket* pClient0;
ClientSocket* pClient1;
};
Session* getSession(uint32_t sessionId);
class ClientSocket
{
public:
bool useTLS;
std::shared_ptr<asio::ip::tcp::socket> socket;
std::shared_ptr<asio::ssl::stream<asio::ip::tcp::socket>> socketSSL;
Session* pSession;
bool isClient0;
std::recursive_mutex writeBufferLock;
std::vector<char> readBuffer;
uint32_t readPos;
ClientSocket(asio::ip::tcp::socket& socket) : useTLS(false)
{
this->socket = std::make_shared<asio::ip::tcp::socket>(std::move(socket));
this->readBuffer.resize(setup::maxMessageSize + sizeof(MessageHeader));
this->readPos = 0;
}
ClientSocket(asio::ssl::stream<asio::ip::tcp::socket>& socket) : useTLS(true)
{
this->socketSSL = std::make_shared<asio::ssl::stream<asio::ip::tcp::socket>>(std::move(socket));
this->readBuffer.resize(setup::maxMessageSize + sizeof(MessageHeader));
this->readPos = 0;
}
bool writeSocket(uint8_t* pBuffer, uint32_t bufferSize)
{
try
{
std::unique_lock<std::recursive_mutex>
lock(this->writeBufferLock);
size_t writtenBytes = 0;
if (true == this->useTLS)
{
writtenBytes = asio::write(*this->socketSSL,
asio::buffer(pBuffer, bufferSize));
}
else
{
writtenBytes = asio::write(*this->socket,
asio::buffer(pBuffer, bufferSize));
}
return (writtenBytes == bufferSize);
}
catch (asio::system_error e)
{
std::cout << e.what() << std::endl;
}
catch (std::exception e)
{
std::cout << e.what() << std::endl;
}
catch (...)
{
std::cout << "Some other exception" << std::endl;
}
return false;
}
void asyncReadNextMessage(uint32_t messageSize)
{
auto readMessageLambda = [&](const asio::error_code errorCode, std::size_t length)
{
this->readPos += (uint32_t)length;
if (0 != errorCode.value())
{
//send socket to remove
printf("errorCode= %u, message=%s\n", errorCode.value(), errorCode.message().c_str());
//sendRemoveMeSignal();
return;
}
if ((this->readPos < sizeof(MessageHeader)))
{
asyncReadNextMessage(sizeof(MessageHeader) - this->readPos);
return;
}
MessageHeader* pMessageHeader = (MessageHeader*)this->readBuffer.data();
if (pMessageHeader->messageLength > setup::maxMessageSize)
{
//Message to big - should disconnect ?
this->readPos = 0;
asyncReadNextMessage(sizeof(MessageHeader));
return;
}
if (this->readPos < pMessageHeader->messageLength)
{
asyncReadNextMessage(pMessageHeader->messageLength - this->readPos);
return;
}
MessageType messageType = (MessageType)pMessageHeader->messageType;
switch(messageType)
{
case MessageType::LOG_ON:
{
LogOn* pLogOn = (LogOn*)pMessageHeader;
printf("LOG_ON message sessionId=%u, isClient0=%u\n", pLogOn->sessionId, pLogOn->isClient0);
this->isClient0 = pLogOn->isClient0;
this->pSession = getSession(pLogOn->sessionId);
if (this->isClient0)
this->pSession->pClient0 = this;
else
this->pSession->pClient1 = this;
}
break;
case MessageType::TEXT_MESSAGE:
{
TextMessage* pTextMessage = (TextMessage*)pMessageHeader;
if (nullptr != pSession)
{
if (this->isClient0)
{
if (nullptr != pSession->pClient1)
{
pSession->pClient1->writeSocket((uint8_t*)pTextMessage, pTextMessage->header.messageLength);
}
}
else
{
if (nullptr != pSession->pClient0)
{
pSession->pClient0->writeSocket((uint8_t*)pTextMessage, pTextMessage->header.messageLength);
}
}
}
}
break;
}
this->readPos = 0;
asyncReadNextMessage(sizeof(MessageHeader));
};
if (true == this->useTLS)
{
this->socketSSL->async_read_some(asio::buffer(this->readBuffer.data() + this->readPos, messageSize), readMessageLambda);
}
else
{
this->socket->async_read_some(asio::buffer(this->readBuffer.data() + this->readPos, messageSize), readMessageLambda);
}
}
};
class SSLRelayServer
{
public:
static SSLRelayServer* pSingleton;
asio::io_context ioContext;
asio::ssl::context sslContext;
std::vector<std::thread> workerThreads;
asio::ip::tcp::acceptor* pAcceptor;
asio::ip::tcp::endpoint* pEndpoint;
bool useTLS;
Session* sessions[setup::maxSessionsNum];
SSLRelayServer() : pAcceptor(nullptr), pEndpoint(nullptr), sslContext(asio::ssl::context::tlsv13_server)//sslContext(asio::ssl::context::sslv23)
{
this->useTLS = false;
this->pSingleton = this;
//this->sslContext.set_options(asio::ssl::context::default_workarounds | asio::ssl::context::no_sslv2);
this->sslContext.set_password_callback(std::bind(&SSLRelayServer::getPrivateKeyPEMFilePassword, this));
this->sslContext.use_certificate_chain_file("server_cert.pem");
this->sslContext.use_private_key_file("server_private_key.pem",
asio::ssl::context::pem);
}
static SSLRelayServer* getSingleton()
{
return pSingleton;
}
std::string getPrivateKeyPEMFilePassword() const
{
return "";
}
void addClientSocket(asio::ip::tcp::socket& socket)
{
ClientSocket* pClientSocket = new ClientSocket(socket); // use smart pointers
pClientSocket->asyncReadNextMessage(sizeof(MessageHeader));
}
void addSSLClientToken(asio::ssl::stream<asio::ip::tcp::socket>&sslSocket)
{
ClientSocket* pClientSocket = new ClientSocket(sslSocket); // use smart pointers
pClientSocket->asyncReadNextMessage(sizeof(MessageHeader));
}
void handleAccept(asio::ip::tcp::socket& socket, const asio::error_code& errorCode)
{
if (!errorCode)
{
printf("accepted\n");
if (true == socket.is_open())
{
asio::ip::tcp::no_delay no_delay_option(true);
socket.set_option(no_delay_option);
addClientSocket(socket);
}
}
}
void handleAcceptTLS(asio::ip::tcp::socket& socket, const asio::error_code& errorCode)
{
if (!errorCode)
{
printf("accepted\n");
if (true == socket.is_open())
{
asio::ip::tcp::no_delay no_delay_option(true);
asio::ssl::stream<asio::ip::tcp::socket> sslStream(std::move(socket), this->sslContext);
try
{
sslStream.handshake(asio::ssl::stream_base::server);
sslStream.lowest_layer().set_option(no_delay_option);
addSSLClientToken(sslStream);
}
catch (asio::system_error e)
{
std::cout << e.what() << std::endl;
return;
}
catch (std::exception e)
{
std::cout << e.what() << std::endl;
return;
}
catch (...)
{
std::cout << "Other exception" << std::endl;
return;
}
}
}
}
void startAccept()
{
auto acceptHandler = [this](const asio::error_code& errorCode, asio::ip::tcp::socket socket)
{
printf("acceptHandler\n");
handleAccept(socket, errorCode);
this->startAccept();
};
auto tlsAcceptHandler = [this](const asio::error_code& errorCode, asio::ip::tcp::socket socket)
{
printf("tlsAcceptHandler\n");
handleAcceptTLS(socket, errorCode);
this->startAccept();
};
if (true == this->useTLS)
{
this->pAcceptor->async_accept(tlsAcceptHandler);
}
else
{
this->pAcceptor->async_accept(acceptHandler);
}
}
bool run(uint32_t servicePort, uint32_t threadsNum, bool useTLS)
{
this->useTLS = useTLS;
this->pEndpoint = new asio::ip::tcp::endpoint(asio::ip::tcp::v4(), servicePort);
this->pAcceptor = new asio::ip::tcp::acceptor(ioContext, *pEndpoint);
this->pAcceptor->listen();
this->startAccept();
for (uint32_t threadIt = 0; threadIt < threadsNum; ++threadIt)
{
this->workerThreads.emplace_back([&]() {
#ifdef WINDOWS
SetThreadDescription(GetCurrentThread(), L"SSLRelayServer worker thread");
#endif
this->ioContext.run(); }
);
}
return true;
}
Session* getSession(uint32_t sessionId)
{
if (nullptr == this->sessions[sessionId])
{
this->sessions[sessionId] = new Session();
}
return this->sessions[sessionId];
}
};
SSLRelayServer* SSLRelayServer::pSingleton = nullptr;
Session* getSession(uint32_t sessionId)
{
SSLRelayServer* pServer = SSLRelayServer::getSingleton();
Session* pSession = pServer->getSession(sessionId);
return pSession;
}
class Client
{
public:
asio::ssl::context sslContext;
std::shared_ptr<asio::ip::tcp::socket> socket;
std::shared_ptr<asio::ssl::stream<asio::ip::tcp::socket>> socketSSL;
asio::io_context ioContext;
bool useTLS;
bool isClient0;
uint32_t readDataIt;
std::vector<uint8_t> readBuffer;
std::thread listenerThread;
Client() : sslContext(asio::ssl::context::tlsv13_client)//sslContext(asio::ssl::context::sslv23)
{
sslContext.load_verify_file("server_cert.pem");
//sslContext.set_verify_mode(asio::ssl::verify_peer);
using asio::ip::tcp;
using std::placeholders::_1;
using std::placeholders::_2;
sslContext.set_verify_callback(std::bind(&Client::verifyCertificate, this, _1, _2));
this->readBuffer.resize(setup::maxMessageSize);
this->readDataIt = 0;
}
bool verifyCertificate(bool preverified, asio::ssl::verify_context& verifyCtx)
{
return true;
}
void listenerRunner()
{
#ifdef WINDOWS
if (this->isClient0)
{
SetThreadDescription(GetCurrentThread(), L"listenerRunner client0");
}
else
{
SetThreadDescription(GetCurrentThread(), L"listenerRunner client1");
}
#endif
while (1==1)
{
asio::error_code errorCode;
size_t transferred = 0;
if (true == this->useTLS)
{
transferred = this->socketSSL->read_some(asio::buffer(this->readBuffer.data() + this->readDataIt, sizeof(MessageHeader) - this->readDataIt), errorCode);
}
else
{
transferred = this->socket->read_some(asio::buffer(this->readBuffer.data() + this->readDataIt, sizeof(MessageHeader) - this->readDataIt), errorCode);
}
this->readDataIt += transferred;
if (0 != errorCode.value())
{
this->readDataIt = 0;
continue;
}
if (this->readDataIt < sizeof(MessageHeader))
continue;
MessageHeader* pMessageHeader = (MessageHeader*)this->readBuffer.data();
if (pMessageHeader->messageLength > setup::maxMessageSize)
{
exit(1);
}
bool resetSocket = false;
while (pMessageHeader->messageLength > this->readDataIt)
{
printf("readDataIt=%u, threadId=%u\n", this->readDataIt, GetCurrentThreadId());
{
//message not complete
if (true == this->useTLS)
{
transferred = this->socketSSL->read_some(asio::buffer(this->readBuffer.data() + this->readDataIt, pMessageHeader->messageLength - this->readDataIt), errorCode);
}
else
{
transferred = this->socket->read_some(asio::buffer(this->readBuffer.data() + this->readDataIt, pMessageHeader->messageLength - this->readDataIt), errorCode);
}
this->readDataIt += transferred;
}
if (0 != errorCode.value())
{
exit(1);
}
}
MessageType messageType = (MessageType)pMessageHeader->messageType;
switch (messageType)
{
case MessageType::TEXT_MESSAGE:
{
TextMessage* pTextMessage = (TextMessage*)pMessageHeader;
printf("TEXT_MESSAGE: %s\n", pTextMessage->data);
}
break;
}
this->readDataIt = 0;
}
}
void run(uint32_t sessionId, bool isClient0, bool useTLS, uint32_t servicePort)
{
this->useTLS = useTLS;
this->isClient0 = isClient0;
if (useTLS)
{
socketSSL = std::make_shared<asio::ssl::stream<asio::ip::tcp::socket>>(ioContext, sslContext);
}
else
{
socket = std::make_shared<asio::ip::tcp::socket>(ioContext);
}
asio::ip::tcp::resolver resolver(ioContext);
asio::ip::tcp::resolver::results_type endpoints = resolver.resolve(asio::ip::tcp::v4(), "127.0.0.1", std::to_string(servicePort));
asio::ip::tcp::no_delay no_delay_option(true);
if (true == useTLS)
{
asio::ip::tcp::endpoint sslEndpoint = asio::connect(socketSSL->lowest_layer(), endpoints);
socketSSL->handshake(asio::ssl::stream_base::client);
socketSSL->lowest_layer().set_option(no_delay_option);
}
else
{
asio::ip::tcp::endpoint endpoint = asio::connect(*socket, endpoints);
socket->set_option(no_delay_option);
}
this->listenerThread = std::thread(&Client::listenerRunner, this);
LogOn logOn;
logOn.isClient0 = isClient0;
logOn.sessionId = sessionId;
const uint32_t logOnSize = sizeof(logOn);
if (true == useTLS)
{
size_t transferred = asio::write(*socketSSL, asio::buffer(&logOn, sizeof(LogOn)));
}
else
{
size_t transferred = asio::write(*socket, asio::buffer(&logOn, sizeof(LogOn)));
}
uint32_t counter = 0;
while (1 == 1)
{
std::string number = std::to_string(counter);
std::string message;
if (this->isClient0)
{
message = "Client0: " + number;
}
else
{
message = "Client1: " + number;
}
TextMessage textMessage;
textMessage.header.messageLength += message.size() + 1;
if (this->useTLS)
{
size_t transferred = asio::write(*socketSSL, asio::buffer(&textMessage, sizeof(TextMessage)));
transferred = asio::write(*socketSSL, asio::buffer(message.c_str(), message.length() + 1));
}
else
{
size_t transferred = asio::write(*socket, asio::buffer(&textMessage, sizeof(TextMessage)));
transferred = asio::write(*socket, asio::buffer(message.c_str(), message.length() + 1));
}
++counter;
//Sleep(1000);
}
}
};
void clientTest(uint32_t sessionId, bool isClient0, bool useTLS,
uint32_t servicePort)
{
#ifdef WINDOWS
if (isClient0)
{
SetThreadDescription(GetCurrentThread(), L"Client0");
}
else
{
SetThreadDescription(GetCurrentThread(), L"Client1");
}
#endif
Client client;
client.run(sessionId, isClient0, useTLS, servicePort);
while (1 == 1)
{
Sleep(1000);
}
}
void SSLRelayTest()
{
SSLRelayServer relayServer;
const uint32_t threadsNum = 1;
const bool useTLS = true;
const uint32_t servicePort = 777;
relayServer.run(servicePort, threadsNum, useTLS);
Sleep(5000);
std::vector<std::thread> threads;
const uint32_t sessionId = 0;
threads.emplace_back(clientTest, sessionId, true, useTLS, servicePort);
threads.emplace_back(clientTest, sessionId, false, useTLS,servicePort);
for (std::thread& threadIt : threads)
{
threadIt.join();
}
}
}
What this sample does ?
It runs SSL relay server on localhost port 777 which connects two clients and allows exchanging
of text messages between them.
Promblem:
When I run that sample server returns error "errorCode= 167772441, message=decryption failed or bad record mac (SSL routines)" in void "asyncReadNextMessage(uint32_t messageSize)"
I found out this is caused by client which reads and writes to client SSL socket from separate threads (changing variable useTLS to 0 runs it on normal socket which proves that it is SSL socket problem).
Apparently TLS is not full-duplex protocol (I did not know about that). I can't synchronize access to read and write with mutex because when socket enters read state and there is no
incoming message writing to socked will be blocked forever. At this thread Boost ASIO, SSL: How do strands help the implementation?
someone recommended using strands but someone else wrote that asio only synchronizes not concurrent execution of read and write handles which does not fix the problem.
I expect that somehow there is a way to synchronize read and write to SSL socket. I'm 100% sure that problem lies in synchronizing read and writes to socket because when I wrote example with read and write to socket done by one thread it worked. However then client always expects that there is message to read which can block all write if there is not. Can it be solved without using separate sockets for reads and writes ?
Okay I figured it out by writting many diffrent samples of code including SSL sockets.
When asio::io_context is already running you can't simply schedule asio::async_write or asio::async_read from thread which is not
associated with strand connected to that socket.
So when there is:
asio::async_write(*this->socketSSL, asio::buffer(pBuffer, bufferSize), asio::bind_executor(readWriteStrand,writeMessageLambda));
but thread which is executing is not running from readWriteStrand strand then it should be written as:
asio::post(ioContext, asio::bind_executor(readWriteStrand, [&]() {asio::async_read(*this->socketSSL, asio::buffer(readBuffer.data() + this->readDataIt, messageSize), asio::bind_executor(readWriteStrand, readMessageLambda)); }));

Port not bound SystemC (E112)

I am trying to implement a producer (master) speaking to a memory element (slave) through the memory controller (which implements the interface simple_mem_interface).
Note: Some functions details and include statements are not fully mentioned in the code attached.
Searching for bugs in the code.
Adding debugging tools to find the fault in Write Enable Port.
binding.cpp
int sc_main(int argc, char* argv[])
{
sc_signal<unsigned int> d_out,d_in,address_d;
sc_signal<bool> wen, ren, ack;
sc_clock ClkFast("ClkFast", 100, SC_NS);
sc_clock ClkSlow("ClkSlow", 50, SC_NS);
Memory_Controller Controller1 ("Controller");
d_out = Controller1.data_mem_read;
ren.write(Controller1.REN);
ack.write(Controller1.ack);
d_in.write(Controller1.data_write);
address_d.write(Controller1.address);
wen.write(Controller1.WEN);
producer P1("Producer");
P1.out(Controller1);
P1.Clk(ClkFast);
Memory_module MEM("Memory");
MEM.Wen(wen);
MEM.Ren(ren);
MEM.ack(ack);
MEM.Clock(ClkSlow);
MEM.data_in(d_in);
MEM.data_out(d_out);
MEM.address(address_d);
sc_start(5000, SC_NS);
return 0;
Memory_controller.h
#define MEM_SIZE 100
#include <interface_func.h>
class Memory_Controller : public sc_module, public simple_mem_if
{
public:
// Ports
sc_in <unsigned int> data_mem_read{ "Data_Read_from_Memory" };
sc_out<bool> REN { "Read_Enable" };
sc_out<bool> WEN { "Write_Enable" };
sc_out <bool> ack{ "ACK_Bool" };
sc_out<unsigned int> address{ "Memory_Address" }, data_write{
"Data_Written_to_Memory" };
// constructor
Memory_Controller(sc_module_name nm) : sc_module(nm)
{ // Creating a 2 dimentional array holding adresses and data
WEN.write(false);
REN.write(false);
ack.write(false);
}
~Memory_Controller() //destructor
{
}
bool Write(unsigned int address_i, unsigned int datum) // blocking write
{
WEN.write(true);
REN.write(false);
data_write.write(datum);
address.write(address_i);
if (ack == true)
return true;
else
return false;
}
bool Read(unsigned int address_i, unsigned int& datum_i) // blocking read
{
WEN.write(false);
REN.write(true);
datum_i=data_mem_read;
address.write(address_i);
if (ack == true)
return true;
else
return false;
}
void register_port(sc_port_base& port, const char* if_typename)
{
cout << "binding " << port.name() << " to "
<< "interface: " << if_typename << endl;
}
};
Memory.h
#define MEM_SIZE 100
#include "interface_func.h"
class Memory_module : public sc_module
{
public:
sc_in<bool> Wen,Ren;
sc_in <unsigned int> address, data_in ;
sc_in<bool> Clock;
sc_out <unsigned int> data_out;
sc_out <bool> ack;
bool fileinput = false;
ifstream myfile;
unsigned int item [MEM_SIZE];
Memory_module()
{
}
void Write() // blocking write
{
while (true)
{
wait();
if (Wen==true)
{
if (address >= MEM_SIZE || address < 0)
{
ack=false;
}
else
{
item[address]=data_in;
ack=true;
}
}
}
}
void Read() // blocking read
{
while (true)
{
wait();
if (Ren)
{
if (address >= MEM_SIZE || address < 0)
ack=false;
else
{
data_out.write(item[address]);
ack=true;
}
}
}
}
SC_CTOR(Memory_module)
{
SC_THREAD(Read);
sensitive << Clock.pos();
SC_THREAD(Write);
sensitive << Clock.pos();
}
};
interface_func.h
class simple_mem_if : virtual public sc_interface
{
public:
virtual bool Write(unsigned int addr, unsigned int data) = 0;
virtual bool Read(unsigned int addr, unsigned int& data) = 0;
};
After debugging the SystemC binder.cpp code, the following error arises:
(E112) get interface failed: port is not bound : port 'Controller.Write_Enable' (sc_out)
You cannot drive your unconnected ports in the Memory_Controller constructor. If you want to explicitly drive these ports during startup, move these calls to a start_of_simulation callback:
Memory_Controller(sc_module_name nm) : sc_module(nm)
{}
void start_of_simulation()
{
WEN.write(false);
REN.write(false);
ack.write(false);
}

How can I write code to receive whole string from a device on rs232?

I want to know how to write code which receives specific string.for example, this one OK , in this I only need "OK" string.
Another string is also like OK
I have written code in keil c51 for at89s52 microcontroller which works but I need more reliable code.
I'm using interrupt for rx data from rs232 serial.
void _esp8266_getch() interrupt 4 //UART Rx.{
if(TI){
TI=0;
xmit_bit=0;
return ;
}
else
{
count=0;
do
{
while(RI==0);
rx_buff=SBUF;
if(rx_buff==rx_data1) //rx_data1 = 0X0D /CR
{
RI=0;
while(RI==0);
rx_buff=SBUF;
if(rx_buff==rx_data2) // rx_data2 = 0x0A /LF
{
RI=0;
data_in_buffer=1;
if(loop_conti==1)
{
if(rec_bit_flag==1)
{
data_in_buffer=0;
loop_conti=0;
}
}
}
}
else
{
if(data_in_buffer==1)
{
received[count]=rx_buff; //my buffer in which storing string
rec_bit_flag=1;
count++;
loop_conti=1;
RI=0;
}
else
{
loop_conti=0;
rec_bit_flag=0;
RI=0;
}
}
}
while(loop_conti==1);
}
rx_buff=0;
}
This is one is just for reference, you need develop the logic further to your needs. Moreover, design is depends on what value is received, is there any specific pattern and many more parameter. And this is not a tested code, I tried to give my idea on design, with this disclaimer here is the sample..
//Assuming you get - "OK<CR><LF>" in which <CR><LF> indicates the end of string steam
int nCount =0;
int received[2][BUF_SIZE]; //used only 2 buffers, you can use more than 2, depending on how speed
//you receive and how fast you process it
int pingpong =0;
bool bRecFlag = FALSE;
int nNofbytes = 0;
void _esp8266_getch() interrupt 4 //UART Rx.
{
if(TI){
TI=0;
xmit_bit=0;
return ;
}
if(RI) // Rx interrupt
{
received[pingpong][nCount]=SBUF;
RI =0;
if(nCount > 0)
{
// check if you receive end of stream value
if(received[pingpong][nCount-1] == 0x0D) && (received[pingpong][nCount] == 0x0A))
{
bRecFlag = TRUE;
pingpong = (pingpong == 0);
nNofbytes = nCount;
nCount = 0;
return;
}
}
nCount++;
}
return;
}
int main()
{
// other stuff
while(1)
{
// other stuff
if(bRecFlag) //String is completely received
{
buftouse = pingpong ? 0 : 1; // when pingpong is 1, buff 0 will have last complete string
// when pingpong is 0, buff 1 will have last complete string
// copy to other buffer or do action on received[buftouse][]
bRecFlag = false;
}
// other stuff
}
}

Calling methods and receiving signals using low-level APIs

I am trying to call the method ReadLocalBdAddrReq and receive its signal ReadLocalBdAddrCfm on dbus using the dbus low level APIs.
I have written the following code with the help of some forum posts and a dbus tutorial.
The thing is, I am not able to receive the signals back. The code is incomplete at some places as I didn't know what should be done.
So please help me so that I can receive the signals for the methods called.
Here the code I have written. Please correct any mistakes I've made.
#include <stdlib.h>
#include <stdio.h>
#include <dbus/dbus.h>
#define OBJ_PATH "/bt/cm"
static dbus_bool_t add_watch(DBusWatch *watch, void *data)
{
if (!dbus_watch_get_enabled(watch))
return TRUE;
int fd = dbus_watch_get_unix_fd(watch);
unsigned int flags = dbus_watch_get_flags(watch);
int f = 0;;
if (flags & DBUS_WATCH_READABLE) {
f |= DBUS_WATCH_READABLE;
printf("Readable\n");
}
if (flags & DBUS_WATCH_WRITABLE) {
printf("Writeable\n");
f |= DBUS_WATCH_WRITABLE;
}
/* this should not be here */
if (dbus_watch_handle(watch, f) == FALSE)
printf("dbus_watch_handle() failed\n");
return TRUE;
}
static void remove_watch(DBusWatch *watch, void *data)
{
printf("In remove watch with fd = [%d]\n",dbus_watch_get_unix_fd(watch));
}
static void toggel_watch(DBusWatch *watch, void *data)
{
printf("In toggel watch\n");
/*
if (dbus_watch_get_enabled(watch))
add_watch(watch, data);
else
remove_watch(watch, data);
*/
}
/* timeout functions */
static dbus_bool_t add_time(DBusTimeout *timeout, void *data)
{
/* Incomplete */
printf("In add_time\n");
if (!dbus_timeout_get_enabled(timeout))
return TRUE;
//dbus_timeout_handle(timeout);
return 0;
}
static void remove_time(DBusTimeout *timeout, void *data)
{
/* Incomplete */
printf("In remove_time\n");
}
static void toggel_time(DBusTimeout *timeout, void *data)
{
/* Incomplete */
printf("In toggel_time\n");
/*
if (dbus_timeout_get_enabled(timeout))
add_timeout(timeout, data);
else
remove_timeout(timeout, data);
*/
}
/* message filter -- handlers to run on all incoming messages*/
static DBusHandlerResult filter (DBusConnection *connection, DBusMessage *message, void *user_data)
{
printf("In filter\n");
char *deviceaddr;
if (dbus_message_is_signal(message, "com.bluegiga.v2.bt.cm", "ReadLocalBdAddrCfm")) {
printf("Signal received is ReadLocalBdAddrCfm\n");
if ((dbus_message_get_args(message,NULL,DBUS_TYPE_STRING, &deviceaddr,DBUS_TYPE_INVALID) == FALSE))
{
printf("Could not get the arguments from the message received\n");
return -2;
}
printf("Got Signal and device address is [%s]\n", deviceaddr);
}
return 0;
}
/* dispatch function-- simply save an indication that messages should be dispatched later, when the main loop is re-entered*/
static void dispatch_status(DBusConnection *connection, DBusDispatchStatus new_status, void *data)
{
printf("In dispatch_status\n");
if (new_status == DBUS_DISPATCH_DATA_REMAINS)
{
printf("new dbus dispatch status: DBUS_DISPATCH_DATA_REMAINS [%d]",new_status);
}
}
/* unregister function */
void unregister_func(DBusConnection *connection, void *user_data)
{
}
/* message function - Called when a message is sent to a registered object path. */
static DBusHandlerResult message_func(DBusConnection *connection, DBusMessage *message, void *data)
{
printf("Message [%s] is sent to [%s] from interface [%s] on path [%s] \n",dbus_message_get_member(message),dbus_message_get_destination(message),
dbus_message_get_interface(message),dbus_message_get_path(message)); return 0;
}
DBusObjectPathVTable table = {
.unregister_function = unregister_func,
.message_function = message_func,
};
int main(void) {
DBusMessage* msg;
DBusMessageIter args;
DBusConnection* conn;
DBusError err;
DBusPendingCall* pending;
int ret;
//unsigned int level;
char* appHandle = NULL;
//int *context;
int msg_serial;
int open;
char *deviceaddr;
dbus_error_init(&err);
// connect to the system bus and check for errors
conn = dbus_bus_get(DBUS_BUS_SYSTEM, &err);
if (dbus_error_is_set(&err)) {
fprintf(stderr, "Connection Error (%s)\n", err.message);
dbus_error_free(&err);
}
if (NULL == conn) {
exit(1);
}
if (!dbus_connection_set_watch_functions(conn, add_watch, remove_watch, toggel_watch, NULL, NULL))
{
printf("Error in dbus_set_watch_functions\n");
dbus_connection_unref(conn);
return -1;
}
/* These functions are responsible for making the application's main loop aware of timeouts */
if (!dbus_connection_set_timeout_functions(conn, add_time, remove_time, toggel_time, NULL, NULL))
{
printf("Error in dbus_set_timeout_functions\n");
dbus_connection_unref(conn);
return -1;
}
/* Used to register the handler functions run on incoming messages*/
if (!dbus_connection_add_filter(conn, filter, NULL, NULL))
{
printf("Error in adding filter\n");
dbus_connection_unref(conn);
return -1;
}
/* Filter added for incoming messages */
/* Set a function to be invoked when the dispatch status changes */
dbus_connection_set_dispatch_status_function(conn, dispatch_status, NULL ,NULL);
/* Register a handler for messages sent to a given path */
if(!dbus_connection_register_object_path(conn, OBJ_PATH, &table, NULL))
{
printf("Error in registering object\n");
return -1;
}
/* sending messages to the outgoing queue */
msg = dbus_message_new_method_call("com.bluegiga.v2.bt.cm", // target for the method call
OBJ_PATH, // object to call on
"com.bluegiga.v2.bt.cm", // interface to call on
"ReadLocalBdAddrReq"); // method name
if (NULL == msg) {
fprintf(stderr, "Message Null\n");
exit(1);
}
dbus_message_iter_init_append(msg, &args);
if (!dbus_message_iter_append_basic(&args, DBUS_TYPE_UINT16,&appHandle)) {
fprintf(stderr, "Out Of Memory!\n");
exit(1);
}
fprintf(stderr, "Sending the connections\n");
// send message and get a handle for a reply
if (!dbus_connection_send (conn, msg, &msg_serial)) {
fprintf(stderr, "Out Of Memory!\n");
exit(1);
}
fprintf(stderr, "Connection sent and the msg serial is %d\n",msg_serial);
/* Message sent over */
/* not sure whether this should be here or above watch */
while (dbus_connection_get_dispatch_status(conn) == DBUS_DISPATCH_DATA_REMAINS)
{
//printf("Entered in dispatch\n");
/* Processes any incoming data. will call the filters registered by add_filer*/
dbus_connection_dispatch(conn);
}
return 0;
}
After I run this program it has the following output:
Readable
Sending the connections
Connection sent and the msg serial is
2(DBUS_MESSAGE_TYPE_METHOD_RETURN)
If the connection was sent to the object path then message_func should have been called correctly, but it never is called. Have I made any mistake in sending the method call?
You are missing the event loop which is otherwise available by default if you choose to go with one of the bindings. When you get a call to add_watch, libdbus expects that the application will attach an IO handler to it. The IOHandler added by application will watch for an activity on the fd (filedescriptor) queried for the watch. Whenever there is an activity on that file descriptor, the IOHandler will trigger a callback with appropriate flags that you need to convert to DBUS flags before calling dbus_watch_handle.
Suggest that you use glib if you don't know how to use event loops. I am able to get it if I use libUV or libEV as low footprint event loop.