dynamic optimization of running programs - optimization

I was told that running programs generate probability data used to optimize repeated instructions.
For example, if an "if-then-else" control structure has been evaluated TRUE 8/10 times, then the next time the "if-then-else" statement is being evaluated, there is an 80% chance the condition will be TRUE. This statistic is used to prompt hardware to load the appropriate data into the registers assuming the outcome will be TRUE. The intent is to speed up the process. If the statement does evaluate to TRUE, data is already loaded to the appropriate registers. If the statement evaluates to FALSE, then the other data is loaded in and simply written over what was decided "more likely".
I have a hard time understanding how the probability calculations don't out-weigh the performance cost of decisions it's trying to improve. Is this something that really happens? Does it happen at a hardware level? Is there a name for this?
I can seem to find any information about the topic.

This is done. It's called branch prediction. The cost is non-trivial, but it's handled by dedicated hardware, so the cost is almost entirely in terms of extra circuitry -- it doesn't affect the time taken to execute the code.
That means the real cost would be one of lost opportunity -- i.e., if there was some other way of designing a CPU that used that amount of circuitry for some other purpose and gained more from doing so. My immediate guess is that the answer is usually no -- branch prediction is generally quite effective in terms of return on investment.

Related

Is faster code also more power efficient?

Assume I have a CPU running at a constant rate, pulling an equal amount of energy per instruction. I also have two functionally identical programs, which result in the same output, except one has been optimized to execute only 100 instructions, while the other program executes 200 instructions. Is the 100 instruction program necessarily faster than the 200 instruction program? Does a program with fewer instructions draw less power than a program with more instructions?
Things are much more complex than this.
For example execution speed is in many cases dominated by memory. As a practical example some code could process the pixels of an image first in rows and then in columns... a different code instead could be more complex but processing rows and columns at the same time.
The second version could execute more instructions because of more complex housekeeping of the data but I wouldn't be surprised if it was faster because of how memory is organized: reading an image one column at a time is going to "trash the cache" and it's very possible that despite being simple the code working that way could be a LOT slower than the more complex one doing the processing in a memory-friendly way. The simpler code may end up being "stalled" a lot waiting for the cache lines to be filled or flushed to the external memory.
This is just an example, but in reality what happens inside a CPU when code is executed is for many powerful processors today a very very complex process: instructions are exploded in micro-instructions, registers are renamed, there is speculative execution of parts of code depending on what branch predictors guess even before the program counter really reaches a certain instruction and so on. Today the only way to know for sure if something is faster or slower is in many cases just trying with real data and measure.
Is the 100 instruction program necessarily faster than the 200 instruction program?
No. Firstly, on some architectures (such as x86) different instructions can take a different number of cycles. Secondly, there are effects — such cache misses, page faults and branch mispreditictions — that complicate the picture further.
From this it follows that the answer to your headline question is "not necessarily".
Further reading.
I found a paper from 2017 comparing the energy usage, speed, and memory consumption of various programming languages. There is an obvious positive correlation between faster languages also using less energy.

Optimizing branch predictions: how to generalize code that could run wth different compiler, interperter, and hardware prediction?

I ran into some slow downs on a tight loop today caused by an If statement, which surprised me some because I expected branch prediction to successfully pipeline the particular statement to minimize the cost of the conditional.
When I sat down to think more about why it wasn't better handled I realized I didn't know much about how branch prediction was being handled at all. I know the concept of branch prediction quite well and it's benefits, but the problem is that I didn't know who was implementing it and what approach they were utilizing for predicting the outcome of a conditional.
Looking deeper I know branch prediction can be done at a few levels:
Hardware itself with instruction pipelining
C++ style compiler
Interpreter of interpreted language.
half-compiled language like java may do two and three above.
However, because optimization can be done in many areas I'm left uncertain as to how to anticipate branch prediction. If I'm writing in Java, for example, is my conditional optimized when compiled, when interpreted, or by the hardware after interpretation!? More interesting, does this mean if someone uses a different runtime enviroment? Could a different branch prediction algorithm used in a different interpreter result in a tight loop based around a conditional showing significant different performance depending on which interpreter it's run with?
Thus my question, how does one generalize an optimization around branch prediction if the software could be run on very different computers which may mean different branch prediction? If the hardware and interpreter could change their approach then profiling and using whichever approach proved fastest isn't a guarantee. Lets ignore C++ where you have compile level ability to force this, looking at the interpreted languages if someone still needed to optimize a tight loop within them.
Are there certain presumptions that are generally safe to make regardless of interpreter used? Does one have to dive into the intricate specification of a language to make any meaningful presumption about branch prediction?
Short answer:
To help improve the performance of the branch predictor try to structure your program so that conditional statements don't depend on apparently random data.
Details
One of the other answers to this question claims:
There is no way to do anything at the high level language to optimize for branch prediction, caching sure, sometimes you can, but branch prediction, no not at all.
However, this is simply not true. A good illustration of this fact comes from one of the most famous questions on Stack Overflow.
All branch predictors work by identifying patterns of repeated code execution and using this information to predict the outcome and/or target of branches as necessary.
When writing code in a high-level language it's typically not necessary for an application programmer to worry about trying to optimizing conditional branches. For instance gcc has the __builtin_expect function which allows the programmer to specify the expected outcome of a conditional branch. But even if an application programmer is certain they know the typical outcome of a specific branch it's usually not necessary to use the annotation. In a hot loop using this directive is unlikely to help improve performance. If the branch really is strongly biased the the predictor will be able to correctly predict the outcome most of the time even without the programmer annotation.
On most modern processors branch predictors perform incredibly well (better than 95% accurate even on complex workloads). So as a micro-optimization, trying to improve branch prediction accuracy is probably not something that an application programmer would want to focus on. Typically the compiler is going to do a better job of generating optimal code that works for the specific hardware platform it is targeting.
But branch predictors rely on identifying patterns, and if an application is written in such a way that patterns don't exist, then the branch predictor will perform poorly. If the application can be modified so that there is a pattern then the branch predictor has a chance to do better. And that is something you might be able to consider at the level of a high-level language, if you find a situation where a branch really is being poorly predicted.
branch prediction like caching and pipelining are things done to make code run faster in general overcoming bottlenecks in the system (super slow cheap dram which all dram is, all the layers of busses between X and Y, etc).
There is no way to do anything at the high level language to optimize for branch prediction, caching sure, sometimes you can, but branch prediction, no not at all. in order to predict, the core has to have the branch in the pipe along with the instructions that preceed it and across architectures and implementations not possible to find one rule that works. Often not even within one architecture and implementation from the high level language.
you could also easily end up in a situation where tuning for branch predictions you de-tune for cache or pipe or other optimizations you might want to use instead. and the overall performance first and foremost is application specific then after that something tuned to that application, not something generic.
For as much as I like to preach and do optimizations at the high level language level, branch prediction is one that falls into the premature optimization category. Just enable it it in the core if not already enabled and sometimes it saves you a couple of cycles, most of the time it doesnt, and depending on the implementation, it can cost more cycles than it saves. Like a cache it has to do with the hits vs misses, if it guesses right you have code in a faster ram sooner on its way to the pipe, if it guesses wrong you have burned bus cycles that could have been used by code that was going to be run.
Caching is usually a benefit (although not hard to write high level code that shows it costing performance instead of saving) as code usually runs linearly for some number of instructions before branching. Likewise data is accessed in order often enough to overcome the penalties. Branching is not something we do every instruction and where we branch to does not have a common answer.
Your backend could try to tune for branch prediction by having the pre-branch decisions happen a few cycles before the branch but all within a pipe size and tuned for fetch line or cache line alignments. again this messes with tuning for other features in the core.

Control of parallelization

I am running a custom processor on a rowset that does not seem to run in parallel. The underlying ~1GB text file is first read into a table that is partitioned via round robin. The 'Extract' runs on 200 vertices but then (under 'Aggregate' node) the processing [that does various complex computations] happens on only 2 vertices even though the parallelism parameter is much higher than that. Is there a special hint that needs to be used to dictate the compiler to use more vertex? Is there a function or property that needs to be overridden to set the parallelism at this phase as well?
Sorry for the late reply. But it is vacation time :).
It is good to see that the extract phase is fully scaled out.
Without seeing the script or the generated plan it is a bit difficult to say why you only see 2 vertices in some places. There are a couple of reasons why that may be the case:
you don't have enough data to scale out to more.
your aggregation needs more data and thus the plan has less parallelism.
your operation is intrinsically less parallel.
The optimizer's data cardinality estimation is off and chooses not enough parallelism. We have some ability to hint, but I rather first see the job.
Note that custom processors often block the optimizer from pushing optimizations through in the script (using the READ ONLY option for example helps) and can throw off the cardinality estimations.
If you send me the script, the job graph and the link to the job to mrys at Microsoft, I and the team will look into it next week after the holidays are over.

Dynamic number of test cases in genetic programming?

When looking at Genetic programming papers, it seems to me that the number of test cases is always fixed. However, most mutations should (?) at every stage of the execution be very deleterious, i. e. make it obvious after one test case that the mutated program performs much worse than the previous one. What happens if you, at first, only try very few (one?) test case and look whether the mutation makes any sense?
Is it maybe so that different test cases test for different features of the solutions, and one mutation will probably improve only one of those features?
I don't know if I agree with your assumption that most mutations should be very deleterious, but you shouldn't care even if they were. Your goal is not to optimize the individuals, but to optimize the population. So trying to determine if a "mutation makes any sense" is exactly what genetic programming is supposed to do: i.e. eliminate mutations that "don't make sense." Your only "guidance" for the algorithm should come through the fitness function.
I'm also not sure what you mean with "test case", but for me it sounds like you are looking for something related to multi-objective-optimization (MOO). That means you try to optimize a solution regarding different aspects of the problem - therefore you do not need to mutate/evaluate a population for a specific test-case, but to find a multi objective fitness function.
"The main idea in MOO is the notion of Pareto dominance" (http://www.gp-field-guide.org.uk)
I think this is a good idea in theory but tricky to put into practice. I can't remember seeing this approach actually used before but I wouldn't be surprised if it has.
I presume your motivation for doing this is to improve the efficiency of the applying the fitness function - you can stop evaluation early and discard the individual (or set fitness to 0) if the tests look like they're going to be terrible.
One challenge is to decide how many test cases to apply; discarding an individual after one random test case is surely not a good idea as the test case could be a real outlier. Perhaps terminating evaluation after 50% of test cases if the fitness of the individual was <10% of the best would probably not discard any very good individuals; on the other hand it might not be worth it given a lot of individuals will be of middle-of-the road fitness and might well only save a small proportion of the computation. You could adjust the numbers so you save more effort, but the more effort you try to save the more chances you have of genuinely good individuals being discarded by accident.
Factor in the extra time to taken to code this and possible bugs etc. and I shouldn't think the benefit would be worthwhile (unless this is a research project in which case it might be interesting to try it and see).
I think it's a good idea. Fitness evaluation is the most computational intense process in GP, so estimating the fitness value of individuals in order to reduce the computational expense of actually calculating the fitness could be an important optimization.
Your idea is a form of fitness approximation, sometimes it's called lazy evaluation (try searching these words, there are some research papers).
There are also distinct but somewhat overlapping schemes, for instance:
Dynamic Subset Selection (Chris Gathercole, Peter Ross) is a method to select a small subset of the training data set on which to actually carry out the GP algorithm;
Segment-Based Genetic Programming (Nailah Al-Madi, Simone Ludwig) is a technique that reduces the execution time of GP by partitioning the dataset into segments and using the segments in the fitness evaluation process.
PS also in the Brood Recombination Crossover (Tackett) child programs are usually evaluated on a restricted number of test cases to speed up the crossover.

basic operations cpu time cost

I was wondering, how to optimize loops for systems with very limited resources. Let's say, if we have a basic for loop, like ( written in javascript):
for(var i = someArr.length - 1; i > -1; i--)
{
someArr[i]
}
I honestly don't know, isn't != cheaper than > ?
I would be grateful for any resources covering computing cost in context of basic operators, like the aforementioned, >>, ~, !, and so on.
Performance on a modern CPU is far from trivial. Here are a couple of things that complicate it:
Computers are fast. Your CPU can execute upwards of 6 billion instructions per second. So even the slowest instruction can be executed millions of times per second, meaning that it only really matters if you use it very often
Modern CPU's have hundreds of instructions in flight simultaneously. They are pipelined, meaning that while one instruction is being read, another is reading from registers, a third one is executing, and a fourth one is writing back to a register. Modern CPU's have 15-20 of such stages. On top of this, they can execute 3-4 instructions at the same time on each of these stages. And they can reorder these instructions. If the multiplication unit is being used by another instruction, perhaps we can find an addition instruction to execute instead, for example. So even if you have some slow instructions mixed in, their cost can be hidden very well most of the time, by executing other instructions while waiting for the slow one to finish.
Memory is hundreds of times slower than the CPU. The instructions being executed don't really matter if their cost is dwarfed by retrieval of data from memory. And even this isn't reliable, because the CPU has its own onboard caches to attempt to hide this cost.
So the short answer is "don't try to outsmart the compiler". If you are able to choose between two equivalent expressions, the compiler is probably able to do the same, and will pick the most efficient one. The cost of an instruction varies, depending on all the above factors. Which other instructions are executing, what data is in the CPU's cache, which precise CPU model is the code running on, and so on. Code that is super efficient in one case may be very inefficient in other cases. The compiler will try to pick the most generally efficient instructions, and schedule them as well as possible. Unless you know more than the compiler about this, you're unlikely to be able to do a better job of it.
Don't try such microoptimizations unless you really know what you're doing. As the above shows, low-level performance is a ridiculously complex subject, and it's very easy to write "optimizations" that result in far slower code. Or which just sacrifice readability on something that makes no difference at all.
Further, most of your code simply doesn't have a measurable impact on performance.
People generally love quoting (or misquoting) Knuth on this subject:
We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all evil
People often interpret this as "don't bother trying to optimize your code". If you actually read the full quote, some much more interesting consequences should become clear:
Most of the time, we should forget about microoptimizations. Most code is executed so rarely that optimizations won't matter. Keeping in mind the number of instructions a CPU can execute per second, it is obvious that a block of code has to be executed very often for optimizations in it to have any effect. So about 97% of the time, your optimizations will be a waste of time. But he also says that sometimes (3% of the time), your optimizations will matter. And obviously, looking for those 3% is a bit like looking for a needle in a haystack. If you just decide to "optimize your code" in general, you're going to waste your time on the first 97%. Instead, you need to first locate the 3% that actually need optimizing. In other words, run your code through a profiler, and let it tell you which code takes up the most CPU time. Then you know where to optimize. And then your optimizations are no longer premature.
It is extraordinarily unlikely that such micro-optimizations will make a noticeable difference to your code in any but the most extreme (real time embedded systems?) circumstances. Your time would probably be better served worrying about making your code readable and maintainable.
When in doubt, always begin by asking Donald Knuth:
http://shreevatsa.wordpress.com/2008/05/16/premature-optimization-is-the-root-of-all-evil/
Or, for a slightly less high-brow take on micro-optimization:
http://www.codinghorror.com/blog/archives/000185.html
Most comparations have same coast, because the processor simply compares it in all aspects, then after that it takes a decision based on flags generated by this previous comparation so the comparation signal doesn't matter at all. But some architectures try to accelerate this process based on the value you are comparing with, like comparations against 0.
As far as I know, bitwise operations are the cheapest operations, slightly faster than addition and subtraction. Multiplication and division operations are a little more expensive, and comparation is the highest coast operation.
That's like asking for a fish, when I would rather teach you to fish.
There are simple ways to see for yourself how long things take. My favorite is to just copy the code 10 times, and then wrap it in a loop of 10^8 times. If I run it and look at my watch, the number of seconds it takes translates to nanoseconds.
Saying don't do premature optimization is a "don't be". If you want a "do be" you could try a proactive performance tuning technique like this.
BTW my favorite way of coding your loop is:
for (i = N; --i >= 0;){...}
Premature Optimization can be dangerous the best approach would be to write your application without worrying about that and then find the slow points and optimize those. If you are really worried about this use a lower level language. An interpreted language like javascript will cost you some processing power when compared to a lower level language like C.
In this particular case, > vs = is probably not a perfomance issue. HOWEVER > is generally safer choice because prevents cases where you modified the code from running off into the weeds and stuck in a infinite loop.