dynamic properties in objective c - objective-c

I found out Objective-C object properties can be marked as #dynamic to let compiler know that implementation will be available at runtime. I'd like to know if there is a way to tell the compiler that all properties on an object are dynamic without explicitly specifying them one-by-one (I don't have a list of properties up front). I know that this would not be a problem if I would just use [object something] but for stylistic purposes I want to use object.something syntax.
I'm fairly sure that it's not possible to do that but I'd like someone to confirm that. Since this is not for production use solution can involve anything you can imagine.
Thanks.
Additional info:
I only care about -something (getter) working so if your solution does not support setters that is fine.
Example:
#interface MagicalClass : NSObject
// property 'something' is not defined!
#end
#implementation MagicalClass
- (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector { ... }
- (void)forwardInvocation:(NSInvocation *)anInvocation { ... }
#end
MagicalClass *obj = [[MagicalClass alloc] init];
[obj something]; // compiler warning
obj.something; // compiler error

This really doesn't work with declared properties. The whole point of them is that you declare upfront what your properties are and how you interact with them. If you don't have any to declare, then you don't have any declared properties.
Unfortunately, it also doesn't work well with plain messages, although it can work better than dot syntax. Objective-C's static type checking will throw a hissy-fit of warnings, and if any of the properties are of non-object types, it might not be able to generate the correct calling code.
This kind of thing is common in languages like Python and Ruby where things don't have to be declared, but it just doesn't mesh well with Objective-C. In Objective-C, accessing arbitrary attributes is generally done with strings (cf. Key-Value Coding and NSAttributedString).

I don't believe this is possible. If you use the id type, you may be able to send undeclared messages, but dot syntax really relies on knowing about your specific accessors.

I haven't tried this, but if you provide a getter and setter, does Xcode still want the #synthesize or #dynamic directive?
So if you property is called something, implement -setSomething: and -something.

Related

How does accessing ivars directly differ from using an accessor?

So in some of the codes I see, they access an objects ivar directly instead of using accessors . What are the advantages of using them instead of accessors?
So how would this
thing = object->ivar
differ from this?
thing = object.ivar
Thanks.
First let me say, I totally loathe the Objective-C dot notation. It sacrifices understandability for brevity and that is a bad thing. In fact, the other two answers here both show evidence of the kind of confusion dot notation introduces.
Having got the rant out of the way, I'll now try to answer the question.
Under the hood, Objective-C objects are implemented as pointers to C structs. This is why
obj->ivar
sometimes works. Given that it's a C struct
(*obj).ivar
should also work exactly as you would expect for C. Having said that, you can make ivars private or protected, in which case using the above outside a scope where they are visible will cause a compiler error.
The dot operator when applied to an Objective-C object (which is a pointer don't forget) has a totally different meaning. It's syntactic sugar for sending an accessor message to the object meaning that:
foo = obj.property;
obj.property = foo;
is identical in effect to
foo = [obj property];
[obj setProperty: foo];
That is all there is to dot notation. If you go through your code changing all instances of the first form to instances of the second form, you have done everything the compiler does wrt dot notation.
In particular
you do not need a declared #property to use dot notation. You can declare the set and get accessors in the traditional way as Objective C methods, although it is definitely best practice to use #property declarations for things that are logically properties.
you do not need a backing instance variable. There's no reason why your getters and setters can't calculate values.
Given the above, the major difference between obj->ivar and obj.ivar is that the former modifies the ivar directly and latter invokes an accessor, this means that the latter can do any memory management stuff needed (retains, releases, copies etc) and can also invoke key value observing.
This is one thing with a huge difference between c/c++ and objective-c.
In C/C++ the . accesses the variable directly and the -> accesses the variable if it's a pointer to the variable, so basically it is the same.
In Objective-C the . is a shortcut to access the property using the setter and getter function and it is always using those functions. You can't access ivars with it if there is no property with that name.
Some say it's "dirty" to allow direct access to the variables. If more people work on the code it's "cleaner" to use accessors because it might be easier to debug where variables are changed since you can always break in the setter.
You can even do "bad" things with it, like:
NSArray *array = [NSArray alloc] init];
int count = array.count;
array.release;
this will technically work, because the array.release is a shortcut for [array release] but it is bad style to use . for other things then properties.
The advantage of properties is that they call methods that work with your ivars, in stead of calling the ivars directly, so you can do things like this:
-(void)setFrame:(CGRect)frame
{
if([self frameIsValid:frame])
{
if(self.flipsFrames)
{
frame.size = CGSizeMake(frame.size.height,frame.size.width);
}
[super setFrame:frame];
[delegate viewSubclass:self ChangedFrameTo:frame];
}
}
Four advantages shown here are:
The possibility to override
The possibility to check a given value
The possibility to alter a given value (use with caution)
A way to react to calls
Another advantage:
-(NSInteger) amountOfMinutes
{
return amountOfSeconds * 60;
}
You can use 1 ivar for multiple properties, saving memory and preventing/reducing redundancy, while keeping useful different formats.
There's not really an advantage to using ivars, except when you don't want to use a property so your class is more encapsulated. That does not make it impossible to reach, but it makes it clear it isn't supposed to be reached.
All ivars are private. There is no way to access them directly from outside the object. Therefore, both of your code samples are equivalent, in ObjC terms.
When you call object.ivar, what you are really doing is calling object's ivar selector. This may be either a getter method that you wrote yourself, or more likely, a synthesized getter method that you created with #synthesize.
thing, however, is an ivar. Your code would be calling the ivar selector on object and assigning the result directly to your instance's thing ivar.
If you had instead written it as self.thing = object.ivar, then you would be using your instance's setter method to assign to thing.
Some of the advantages of using accessors (specifically, synthesized properties) in ObjC are KVO/KVC compliance; better concurrency support; access control (readonly, readwrite); as well as all of the advantages that accessors give you in any other OO language.

Dynamically bind method to selector at runtime

I want to programmatically associate code with selectors. I am not clear on how to do that in Objective C. In Ruby, I might override method_missing. In Common Lisp, I might define a macro. In Objective C, I can get part of the way there with #dynamic properties, but I'm unclear on how to actually implement them.
Here's a concrete example: I want to use an NSMutableDictionary to persistently store parts of my object. My class has two methods that handle the basic functionality, and a bunch of dynamic properties (matching #propertys exist in #interface):
#dynamic name;
#dynamic age;
#dynamic favoriteColor;
- (id)accessor:(NSString*)name {
return [[self dict] objectForKey:name];
}
- (void)mutator:(NSString*)name value:(id)value{
[[self dict] setObject:value forKey:name];
[[self dict] writeToFile:[self filename] atomically:YES];
}
Now I am looking for a way to translate a call like
[myInstance setName:#"iter"];
into
[self mutator:#"name" value#"iter"];
I wonder if there is an idiomatic way to do that in ObjC.
This isn't really an idiomatic thing to do in Objective-C, and there's certainly nothing like a Lisp macro available. NSObject and the runtime do, however, provide three possible points for you to intercept and handle messages referring to methods that don't otherwise exist. In the order they are used by the runtime: resolveInstanceMethod:, forwardInvocation: and doesNotRespondToSelector:. The documentation for each of them explains their use and gives some examples.
The first requires you to actually write out and add a method to the class, which doesn't seem like it will achieve the dynamic state of affairs you desire. The last by default raises an exception and doesn't provide for any return value. Almost certainly, forwardInvocation is what you want to look into. It allows your object to ask another object to handle a method call, including the passed arguments; it should be possible for you to make your object handle the call itself in a way that at least gets you close to what you're going for.
Also, the "Message Forwarding" chapter of the Runtime Programming Guide gives some examples of tasks similar to your requirement.
If an object does not have the method that you have called on it you can override forwardInvocation to delegate the method call to another object.
You can use the Objective-C runtime functions along with resolveInstanceMethod:. There's a short example in the resolveInstanceMethod: docs.

When to use [self.obj message] vs [obj message] [duplicate]

This question already has answers here:
Closed 11 years ago.
Possible Duplicates:
When to access properties with 'self'
In Objective-C on iOS, what is the (style) difference between “self.foo” and “foo” when using synthesized getters?
For example sake, I have a #property named obj and I #synthesize it. So when do I need to use [self.obj message] vs [obj message] in my implementation class.
Using self, the getter method will be called. Thus, any additional logic in this getter method is executed. This is especially useful when instance variables are lazy loaded through their getters.
I myself try to use self most of the time. Lazy loading is just an example, another thing is that with self, subclasses may override the getter to get different results.
Using self to set a variable is even more useful. It will trigger KVO notifications and handle memory management automatically (when properly implemented, of course)
Here are two great tutorials that cover this issue well:
Understanding your (Objective-C) self
When to use properties & dot notation
When synthesize a property, the compiler declare a related ivar for you, in default, the ivar is the same as property name. I recommend use self.obj always to keep code cleaner, and avoid some potential bugs.
And I suggest you follow the good practice from Apple, #synthesize obj=_obj, the ivar will become _obj, when you mean to use property, this style force you to write self.obj, directly call obj will be error since the ivar is _obj.
Edit: automatically creating ivar for property is only in modern Objective-C runtime, it's safe in iOS SDK 4.0 and Mac OS X 10.6 above.
http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocProperties.html%23//apple_ref/doc/uid/TP30001163-CH17-SW1
For #synthesize to work in the legacy
runtime, you must either provide an
instance variable with the same name
and compatible type of the property or
specify another existing instance
variable in the #synthesize statement.
With the modern runtime, if you do not
provide an instance variable, the
compiler adds one for you.
In the future, please search the site. You'll often find that the exact question you're asking has been asked before:
difference between accessing a property via "propertyname" versus "self.propertyname" in objective-c?
When to access properties with 'self'
self.variable and variable difference
Objective-C: When to call self.myObject vs just calling myObject
iVar property, access via self?
Should I Use self Keyword (Properties) In The Implementation?
In Objective-C on iOS, what is the (style) difference between "self.foo" and "foo" when using synthesized getters?
When to use self on class properties?
... etc.

When would you NOT want to use #synthesized instance variables?

In the Modern Objective-C runtime, you can do something like this:
#interface MyClass : NSObject {
}
#property NSString *stringProperty;
#end
#implementation MyClass
#synthesize stringProperty;
#end
It is my understanding with the modern runtime this will not only synthesize the accessors for my property, but also the instance variable itself, so I could then say in one of this class's methods [stringProperty length]; and it would work just as if I'd declared an instance variable.
I've started using this in all my code now, because, well it's one less thing I have to write over and over again. And I've heard with the clang 2.0 compiler, I'll even be able to skip the #synthesize (but that's another matter). But I've been wondering, what are some of the downsides to doing this? When might I truly need an instance variable in addition to my properties?
I know there are sometimes when I want to keep a variable private and not give access to it externally (but then I usually just declare the property in my private class extension, or I don't create a property for it at all, if I don't need accessors for it).
Are there any times when I wouldn't want to do this?
One possible reason why it might be advisable to not use synthesized instance variables is they are a bit more of a pain to debug in the current version of Xcode (3.2.5). They don't seem to show up in the live debugger view when running code through GDB, the only way to get at them is through the gdb console like po [0xOBJ_ADDRESS propertyName]. Not exactly as nice as a standard, non-synthesized ivar.
Maybe Xcode 4 fixes this but I don't have enough experience with it to say (and it's still under NDA).
More info on this SO question: Seeing the value of a synthesized property in the Xcode debugger when there is no backing variable
You may want to provide many properties for a single instance variable, e.g., :
for accessing an angle value both in degrees and radians
for accessing coordinates both in rectangular and in polar systems
In these cases, you don't want to synthesize instance variables (it already exist) nor accessor methods (you want to provide them for doing conversions).
Anytime you need to make a conversion (unless someone knows a better way) in a class you need to serialize. For example if you have a class that has a numeric value. You cannot serialize an integer so you store it as a NSNumber in the class but the property is a integer type.
Another example is if you code as Apple recommends when working with CoreData. They say you should create a custom class derived from NSManagedObject as the Class for your managed object and use a property for each attribute. Then you would use #dynamic instead of #synthesize and no iVar is needed at all.
But I've been wondering, what are some of the downsides to doing this? When might I truly need an instance variable in addition to my properties?
Possible reasons:
it allows you to change the instance variable in init and dealloc without tripping over subclass overrides or KVO.
the app will compile and run in 32 bit mode on Mac OS X. There are still some Intel Macs out there that don't support 64 bit.
I'm not sure how valid the first point really is. There may be other ways around the issues. The second point is game over though if you need to support older Macs.
One other reason is to avoid shortcuts to direct variable access.
I try to follow the personal coding convention:
- object variable: prefix with underscore '_xxx'
- property: named without underscore 'xxx'
This ensure that I never write unintentionally something like
xxx = value;
or
[xxx someMessage];
I want to always use the getter/setter.
self.xxx = value;
[self.xxx someMessage];
This is particularly useful when you are using lazy init for object variables...

Using instance variables with Modern Runtime

I have several years of experience in Obj-c and Cocoa, but am just now getting back into it and the advances of Obj-C 2.0 etc.
I'm trying to get my head around the modern runtime and declaring properties, etc. One thing that confuses me a bit is the ability in the modern runtime to have the iVars created implicitly. And of course this implies that in your code you should always be using self.property to access the value.
However, in init* and dealloc(assuming you're not using GC) methods we should be using the iVar directly (in the current runtime).
So questions are:
Should we use property accessors in init* and dealloc with Modern Runtime?
If so, why is this different? Is it just because the compiler can't see the iVar?
If I need to override an accessor, can I still access that iVar that will be defined at runtime or do I have to define an actual iVar that the runtime will then use?
Again, if I can access the synthesized iVar, why can't I continue to do this for the init* and dealloc methods?
I read the docs several times, but they seemed a bit vague about all of this and I want to be sure that I understand it well in order to decide how I want to continue coding.
Hope that my questions are clear.
Quick summary of testing:
If you don't declare the ivar in legacy, compiler is completely unhappy
If you use #ifndef __OBJC2__ around ivar in legacy compiler is happy and you can use both ivar directly and as property
In modern runtime, you can leave the ivar undefined and access as property
In modern runtime, trying to access ivar directly without declaration gives error during compile
#private declaration of ivar, of course, allows direct access to ivar, in both legacy and modern
Doesn't really give a clean way to go forward right now does it?
In the current (OS X 10.5/GCC 4.0.1) compiler, you cannot directly access the runtime-synthesized ivars. Greg Parker, one of the OS X runtime engineers put it this way on the cocoa-dev list (March 12, 2009):
You can't in the current compiler. A
future compiler should fix that. Use
explicit #private ivars in the
meantime. An #private ivar should not
be considered part of the contract -
that's what #private means, enforced
by compiler warnings and linker
errors.
And why isn't there a way to
explicitly declare instance variables
in the .m file for the new runtime?
Three reasons: (1) there are some
non-trivial design details to work
out, (2) compiler-engineer-hours are
limited, and (3) #private ivars are
generally good enough.
So, for now you must use dot-notation to access properties, even in init and dealloc. This goes against the best practice of using ivars directly in these cases, but there's no way around it. I find that the ease of using runtime-synthesized ivars (and the performance benefits) outweigh this in most cases. Where you do need to access the ivar directly, you can use a #private ivar as Greg Parker suggests (there's nothing that prevents you from mixing explicitly declared and runtime-synthesized ivars).
Update With OS X 10.6, the 64-bit runtime does allow direct access to the synthesized ivars via self->ivar.
Since instance variables themselves can only be synthesized in the modern runtime (and must be declared in the #interface under 32-bit or pre-Leopard), it's safest / most portable to also declare the ivar
Should we use property accessors in init* and dealloc with Modern Runtime?
My rule of thumb is "possibly" for -init*, and "usually not" for -dealloc.
When initializing an object, you want to make sure to properly copy/retain values for ivars. Unless the property's setter has some side effect that makes it inappropriate for initialization, definitely reuse the abstraction the property provides.
When deallocating an object, you want to release any ivar objects, but not store new ones. An easy way to do this is to set the property to nil (myObject.myIvar = nil), which basically calls [myObject setMyIvar:nil]. Since messages to nil are ignored, there is no danger in this. However, it's overkill when [myIvar release]; is usually all you need. In general, don't use the property (or directly, the setter) in situations where deallocation should behave differently than setting the variable.
I can understand eJames' argument against using property accessors in init/dealloc at all, but the flipside is that if you change the property behavior (for example, change from retain to copy, or just assign without retaining) and don't use it in init, or vice versa, the behavior can get out of sync too. If initializing and modifying an ivar should act the same, use the property accessor for both.
If so, why is this different? Is it just because the compiler can't see the ivar?
The modern runtime deals with class size and layout more intelligently, which is why you can change the layout of ivars without having to recompile subclasses. It is also able to infer the name and type of the ivar you want from the name and type of the corresponding property. The Objective-C 2.0 Runtime Programming Guide has more info, but again, I don't know how deeply the details explained there.
If I need to override an accessor, can I still access that iVar that will be defined at runtime or do I have to define an actual iVar that the runtime will then use?
I haven't tested this, but I believe you're allowed to access the named ivar in code, since it actually does have to be created. I'm not sure whether the compiler will complain, but I would guess that since it will let you synthesize the ivar without complaining, it is also smart enough to know about the synthesized ivar and let you refer to it by name.
Again, if I can access the synthesized iVar, why can't I continue to do this for the init* and dealloc methods?
You should be able to access the property and/or ivar anytime after the instance has been allocated.
There is another SO question with similar information, but it isn't quite a duplicate.
The bottom line, from the Objective-C 2.0 documentation, and quoted from Mark Bessey's answer is as follows:
There are differences in the behavior that depend on the runtime (see also “Runtime Differences”):
For the legacy runtimes, instance variables must already be declared in the #interface block. If an instance variable of the same name and compatible type as the property exists, it is used—otherwise, you get a compiler error.
For the modern runtimes, instance variables are synthesized as needed. If an instance variable of the same name already exists, it is used.
My understanding is as follows:
You should not use property accessors in init* and dealloc methods, for the same reasons that you should not use them in the legacy runtime: It leaves you open to potential errors if you later override the property methods, and end up doing something that shouldn't be done in init* or dealloc.
You should be able to both synthesize the ivar and override the property methods as follows:
#interface SomeClass
{
}
#property (assign) int someProperty;
#end
#implementation SomeClass
#synthesize someProperty; // this will synthesize the ivar
- (int)someProperty { NSLog(#"getter"); return someProperty; }
- (void)setSomeProperty:(int)newValue
{
NSLog(#"setter");
someProperty = newValue;
}
#end
Which leads me to think that you would be able to access the synthesized ivar in your init* and dealloc methods as well. The only gotcha I could think of is that the #synthesize line may have to come before the definitions of your init* and dealloc methods in the source file.
In the end, since having the ivars declared in the interface still works, that is still your safest bet.
I am running into the same problem. The way I am working around not being able to access the synthesized instance variables is the following:
public header
#interface MyObject:NSObject {
}
#property (retain) id instanceVar;
#property (retain) id customizedVar;
#end
private header / implementation
#interface MyObject()
#property (retain) id storedCustomizedVar;
#end
#implementation MyObject
#synthesize instanceVar, storedCustomizedVar;
#dynamic customizedVar;
- customizedVar {
if(!self.storedCustomizedVar) {
id newCustomizedVar;
//... do something
self.storedCustomizedVar= newCustomizedVar;
}
return self.storedCustomizedVar;
}
- (void) setCustomizedVar:aVar {
self.storedCustomizedVar=aVar;
}
#end
It's not that elegant, but at least it keeps my public header file clean.
If you use KVO you need to define customizedVar as dependent key of storedCustomizedVar.
I'm relatively new to Obj-C (but not to programming) and have also been confused by this topic.
The aspect that worries me is that it seems to be relatively easy to inadvertently use the iVar instead of the property. For example writing:
myProp = someObject;
instead of
self.myProp = someObject;
Admittedly this is "user" error, but it's still seems quite easy to do accidentally in some code, and for a retained or atomic property it could presumably lead to problems.
Ideally I'd prefer to be able to get the runtime to apply some pattern to the property name when generating any iVar. E.g. always prefix them with "_".
In practice at the moment I'm doing this manually - explicitly declaring my ivars, and deliberately giving them different names from the properties. I use an old-style 'm' prefix, so if my property is "myProp", my iVar will be "mMyProp". Then I use #synthesize myProp = mMyProp to associate the two.
This is a bit clumsy I admit, and a bit of extra typing, but it seems worth it to me to be able to disambiguate a little bit more clearly in the code. Of course I can still get it wrong and type mMyProp = someObject, but I'm hoping that the 'm' prefix will alert me to my error.
It would feel much nicer if I could just declare the property and let the compiler/runtime do the rest, but when I have lots of code my gut instinct tells me that I'll make mistakes that way if I still have to follow manual rules for init/dealloc.
Of course there are also plenty of other things I can also do wrong...