Why #autoreleasepool? - objective-c

Under ARC, we can no longer call autorelease. Essentially, the entire notion of auto release pool is out the window. Why then, do we need the #autoreleasepool directive?

In fact the notion of retain/release/autorelease is still present when using ARC. The difference is that the compiler adds them for you. This means that the concept of an autorelease pool is still relevant and you might want to use them in exactly the same situations as before.

Related

Do I need to use autorelease on object which created not using alloc init? [duplicate]

I'm just beginning to have a look at Objective-C and Cocoa with a view to playing with the iPhone SDK. I'm reasonably comfortable with C's malloc and free concept, but Cocoa's references counting scheme has me rather confused. I'm told it's very elegant once you understand it, but I'm just not over the hump yet.
How do release, retain and autorelease work and what are the conventions about their use?
(Or failing that, what did you read which helped you get it?)
Let's start with retain and release; autorelease is really just a special case once you understand the basic concepts.
In Cocoa, each object keeps track of how many times it is being referenced (specifically, the NSObject base class implements this). By calling retain on an object, you are telling it that you want to up its reference count by one. By calling release, you tell the object you are letting go of it, and its reference count is decremented. If, after calling release, the reference count is now zero, then that object's memory is freed by the system.
The basic way this differs from malloc and free is that any given object doesn't need to worry about other parts of the system crashing because you've freed memory they were using. Assuming everyone is playing along and retaining/releasing according to the rules, when one piece of code retains and then releases the object, any other piece of code also referencing the object will be unaffected.
What can sometimes be confusing is knowing the circumstances under which you should call retain and release. My general rule of thumb is that if I want to hang on to an object for some length of time (if it's a member variable in a class, for instance), then I need to make sure the object's reference count knows about me. As described above, an object's reference count is incremented by calling retain. By convention, it is also incremented (set to 1, really) when the object is created with an "init" method. In either of these cases, it is my responsibility to call release on the object when I'm done with it. If I don't, there will be a memory leak.
Example of object creation:
NSString* s = [[NSString alloc] init]; // Ref count is 1
[s retain]; // Ref count is 2 - silly
// to do this after init
[s release]; // Ref count is back to 1
[s release]; // Ref count is 0, object is freed
Now for autorelease. Autorelease is used as a convenient (and sometimes necessary) way to tell the system to free this object up after a little while. From a plumbing perspective, when autorelease is called, the current thread's NSAutoreleasePool is alerted of the call. The NSAutoreleasePool now knows that once it gets an opportunity (after the current iteration of the event loop), it can call release on the object. From our perspective as programmers, it takes care of calling release for us, so we don't have to (and in fact, we shouldn't).
What's important to note is that (again, by convention) all object creation class methods return an autoreleased object. For example, in the following example, the variable "s" has a reference count of 1, but after the event loop completes, it will be destroyed.
NSString* s = [NSString stringWithString:#"Hello World"];
If you want to hang onto that string, you'd need to call retain explicitly, and then explicitly release it when you're done.
Consider the following (very contrived) bit of code, and you'll see a situation where autorelease is required:
- (NSString*)createHelloWorldString
{
NSString* s = [[NSString alloc] initWithString:#"Hello World"];
// Now what? We want to return s, but we've upped its reference count.
// The caller shouldn't be responsible for releasing it, since we're the
// ones that created it. If we call release, however, the reference
// count will hit zero and bad memory will be returned to the caller.
// The answer is to call autorelease before returning the string. By
// explicitly calling autorelease, we pass the responsibility for
// releasing the string on to the thread's NSAutoreleasePool, which will
// happen at some later time. The consequence is that the returned string
// will still be valid for the caller of this function.
return [s autorelease];
}
I realize all of this is a bit confusing - at some point, though, it will click. Here are a few references to get you going:
Apple's introduction to memory management.
Cocoa Programming for Mac OS X (4th Edition), by Aaron Hillegas - a very well written book with lots of great examples. It reads like a tutorial.
If you're truly diving in, you could head to Big Nerd Ranch. This is a training facility run by Aaron Hillegas - the author of the book mentioned above. I attended the Intro to Cocoa course there several years ago, and it was a great way to learn.
If you understand the process of retain/release then there are two golden rules that are "duh" obvious to established Cocoa programmers, but unfortunately are rarely spelled out this clearly for newcomers.
If a function which returns an object has alloc, create or copy in its name then the object is yours. You must call [object release] when you are finished with it. Or CFRelease(object), if it's a Core-Foundation object.
If it does NOT have one of these words in its name then the object belongs to someone else. You must call [object retain] if you wish to keep the object after the end of your function.
You would be well served to also follow this convention in functions you create yourself.
(Nitpickers: Yes, there are unfortunately a few API calls that are exceptions to these rules but they are rare).
If you're writing code for the desktop and you can target Mac OS X 10.5, you should at least look into using Objective-C garbage collection. It really will simplify most of your development — that's why Apple put all the effort into creating it in the first place, and making it perform well.
As for the memory management rules when not using GC:
If you create a new object using +alloc/+allocWithZone:, +new, -copy or -mutableCopy or if you -retain an object, you are taking ownership of it and must ensure it is sent -release.
If you receive an object in any other way, you are not the owner of it and should not ensure it is sent -release.
If you want to make sure an object is sent -release you can either send that yourself, or you can send the object -autorelease and the current autorelease pool will send it -release (once per received -autorelease) when the pool is drained.
Typically -autorelease is used as a way of ensuring that objects live for the length of the current event, but are cleaned up afterwards, as there is an autorelease pool that surrounds Cocoa's event processing. In Cocoa, it is far more common to return objects to a caller that are autoreleased than it is to return objets that the caller itself needs to release.
Objective-C uses Reference Counting, which means each Object has a reference count. When an object is created, it has a reference count of "1". Simply speaking, when an object is referred to (ie, stored somewhere), it gets "retained" which means its reference count is increased by one. When an object is no longer needed, it is "released" which means its reference count is decreased by one.
When an object's reference count is 0, the object is freed. This is basic reference counting.
For some languages, references are automatically increased and decreased, but objective-c is not one of those languages. Thus the programmer is responsible for retaining and releasing.
A typical way to write a method is:
id myVar = [someObject someMessage];
.... do something ....;
[myVar release];
return someValue;
The problem of needing to remember to release any acquired resources inside of code is both tedious and error-prone. Objective-C introduces another concept aimed at making this much easier: Autorelease Pools. Autorelease pools are special objects that are installed on each thread. They are a fairly simple class, if you look up NSAutoreleasePool.
When an object gets an "autorelease" message sent to it, the object will look for any autorelease pools sitting on the stack for this current thread. It will add the object to the list as an object to send a "release" message to at some point in the future, which is generally when the pool itself is released.
Taking the code above, you can rewrite it to be shorter and easier to read by saying:
id myVar = [[someObject someMessage] autorelease];
... do something ...;
return someValue;
Because the object is autoreleased, we no longer need to explicitly call "release" on it. This is because we know some autorelease pool will do it for us later.
Hopefully this helps. The Wikipedia article is pretty good about reference counting. More information about autorelease pools can be found here. Also note that if you are building for Mac OS X 10.5 and later, you can tell Xcode to build with garbage collection enabled, allowing you to completely ignore retain/release/autorelease.
Joshua (#6591) - The Garbage collection stuff in Mac OS X 10.5 seems pretty cool, but isn't available for the iPhone (or if you want your app to run on pre-10.5 versions of Mac OS X).
Also, if you're writing a library or something that might be reused, using the GC mode locks anyone using the code into also using the GC mode, so as I understand it, anyone trying to write widely reusable code tends to go for managing memory manually.
As ever, when people start trying to re-word the reference material they almost invariably get something wrong or provide an incomplete description.
Apple provides a complete description of Cocoa's memory management system in Memory Management Programming Guide for Cocoa, at the end of which there is a brief but accurate summary of the Memory Management Rules.
I'll not add to the specific of retain/release other than you might want to think about dropping $50 and getting the Hillegass book, but I would strongly suggest getting into using the Instruments tools very early in the development of your application (even your first one!). To do so, Run->Start with performance tools. I'd start with Leaks which is just one of many of the instruments available but will help to show you when you've forgot to release. It's quit daunting how much information you'll be presented with. But check out this tutorial to get up and going fast:
COCOA TUTORIAL: FIXING MEMORY LEAKS WITH INSTRUMENTS
Actually trying to force leaks might be a better way of, in turn, learning how to prevent them! Good luck ;)
Matt Dillard wrote:
return [[s autorelease] release];
Autorelease does not retain the object. Autorelease simply puts it in queue to be released later. You do not want to have a release statement there.
My usual collection of Cocoa memory management articles:
cocoa memory management
There's a free screencast available from the iDeveloperTV Network
Memory Management in Objective-C
NilObject's answer is a good start. Here's some supplemental info pertaining to manual memory management (required on the iPhone).
If you personally alloc/init an object, it comes with a reference count of 1. You are responsible for cleaning up after it when it's no longer needed, either by calling [foo release] or [foo autorelease]. release cleans it up right away, whereas autorelease adds the object to the autorelease pool, which will automatically release it at a later time.
autorelease is primarily for when you have a method that needs to return the object in question (so you can't manually release it, else you'll be returning a nil object) but you don't want to hold on to it, either.
If you acquire an object where you did not call alloc/init to get it -- for example:
foo = [NSString stringWithString:#"hello"];
but you want to hang on to this object, you need to call [foo retain]. Otherwise, it's possible it will get autoreleased and you'll be holding on to a nil reference (as it would in the above stringWithString example). When you no longer need it, call [foo release].
The answers above give clear restatements of what the documentation says; the problem most new people run into is the undocumented cases. For example:
Autorelease: docs say it will trigger a release "at some point in the future." WHEN?! Basically, you can count on the object being around until you exit your code back into the system event loop. The system MAY release the object any time after the current event cycle. (I think Matt said that, earlier.)
Static strings: NSString *foo = #"bar"; -- do you have to retain or release that? No. How about
-(void)getBar {
return #"bar";
}
...
NSString *foo = [self getBar]; // still no need to retain or release
The Creation Rule: If you created it, you own it, and are expected to release it.
In general, the way new Cocoa programmers get messed up is by not understanding which routines return an object with a retainCount > 0.
Here is a snippet from Very Simple Rules For Memory Management In Cocoa:
Retention Count rules
Within a given block, the use of -copy, -alloc and -retain should equal the use of -release and -autorelease.
Objects created using convenience constructors (e.g. NSString's stringWithString) are considered autoreleased.
Implement a -dealloc method to release the instancevariables you own
The 1st bullet says: if you called alloc (or new fooCopy), you need to call release on that object.
The 2nd bullet says: if you use a convenience constructor and you need the object to hang around (as with an image to be drawn later), you need to retain (and then later release) it.
The 3rd should be self-explanatory.
Lots of good information on cocoadev too:
MemoryManagement
RulesOfThumb
As several people mentioned already, Apple's Intro to Memory Management is by far the best place to start.
One useful link I haven't seen mentioned yet is Practical Memory Management. You'll find it in the middle of Apple's docs if you read through them, but it's worth direct linking. It's a brilliant executive summary of the memory management rules with examples and common mistakes (basically what other answers here are trying to explain, but not as well).

ARC reference counting dealloc, and release

I am getting a bit confused. I am creating an app with storyboard, and running it on iPad 1. the application uses a lot of memory, so reached the 120mb, crashes. accordingly to what I have understood to remove this problem you need to release, dealloc... the point is that with ARC this should be automatic. In fact if I add for e.g.: [label1 release]; it gives me an error. But this ARC automatic release and dealloc does not seem to work! Is this because there are different ways to release with ARC??
You don't need to manually retain/release/autorelease with ARC. However if you have active references to a lot of unused objects they will still remain in memory. Profile your app with Instruments and it will show you how many objects you're creating of each class and how much memory they're consuming.
With ARC you still need to think about memory usage you just don't need to worry as much about memory leaks.
NSObject *bigMemObj = [[BigMemClass alloc] init];
//This creates the object in memory. In both arc and manual counting the retain count is 1
//Do stuff
//Prior to ARC you would have had to call [bigMemObj release]; before setting the variable to nil
bigMemObj = nil
//With ARC you don't have to do anything. The compiler inserts the release at compile time
Also read the documentation on declaring iVars __strong vs __weak.
Without looking at your code it's hard to identify what is consuming all the memory but hopefully that should help you determine where to start looking.
You should implement #autoreleasePool{} inside each method. In essence, each method will look like the following:
-(void)methodName{
#autoreleasePool{
//do method stuff
}
}
This will ensure that, upon exiting the autoreleasePool, memory is properly released.
I can't vote this back up, otherwise I would. I think Alessandro is asking about ARC vs using release and dealloc, not about what he's loading!
So, Alessandro, your understanding is correct that with ARC you don't release or dealloc. Therefore, those won't work if you're using ARC. Also, there is no alternative to release/dealloc, since ARC doesn't use it.
My suggestion would be to look at what you're using in the app that is taking up all this memory. Do you have a large number of pictures, for example, that are very large? Keep any graphics as small as possible, matching the resolution of the iPad. Especially the iPad 1, which doesn't have the "retina display".
You can use Autorelease pools in ARC. Here is some documentation on when to use them:
NSAutoreleasePool Class Reference
Advanced Memory Management Programming Guide: About Memory Management

Objective C - Memory Management and autorelease ???

Does autorelease guaranty that at the end of blocks the object will get released?
Or is it better to manually release objects?
It guarantees it will be released sometime after the block executes, not necessarily immediately after. It's up to the runtime to determine exactly when.
It's not big deal unless you're doing something with a lot of autoreleased variables, like creating them in a big loop, or if you're creating large autoreleased objects, like UIImages. In these cases, you should manually release when you're through, otherwise autorelease is perfectly acceptable.
If an object is autoreleased, you MUST not manually release it (unless it is retained of course). The NSAutoRelease pool which is part of the UIKit event handler will release it for you. If you were to manually release the object, the pool may cause a crash or other undefined behavior as the object will be doubly-released.
If there are cases where you generate a lot of objects or use a lot of memory in objects, you can pre-emptively autorelease them (perhaps in your loop) by creating your own NSAutoReleasePool - pools can be nested.
It's better to release objects rather than autorelease, unless of course you have an explicit reason to use autorelease, for example use autorelease when returning an object the method retained and you can't avoid it.
Basically autorelease should be used as an excuse to completely avoid memory management. You want to release objects as soon as you possible can. Autorelease just says the object will be released some time in the future.

How should I memory manage objects returned by instance methods?

Plenty of Objective-C classes return objects. Statements like [[instanceOfNSWhatever objectForKey:aKey] stringValue], for instance, appear all over my (and hopefully everyone else's code).
How am I supposed to memory manage these "intermediate" objects?
Were they just created or did they always exist?
Can I retain them, and if I release the object that created them, will they be released as well?
Are they autoreleased?
What if I run [instanceOfNSWhatever stringValue] a million times in a loop? Can I dispose of all those NSStrings as needed?
I'm still learning ObjC, and while I've been good at balancing my retain counts overall, I'm definitely lacking some understanding about how these methods work. Can anyone fill me in?
You've probably already read this section of Apple's docs about memory management, but I'll point you to the section about the Object Ownership Policy just in case. You are only responsible for managing the memory of objects you "own". To quote the docs:
You own any object you create.
You "create" an object using a method whose name begins with “alloc” or “new” or contains “copy” (for example, alloc, newObject, or mutableCopy).
If you own an object, you are responsible for relinquishing ownership when you have finished with it. [ie: release]
If you do not own an object, you must not release it.
The "Simple Examples" section of those docs provide good elaboration, but to put the points above in the context of your specific questions:
How am I supposed to memory manage these "intermediate" objects?
The good news is: you don't. Ignore the the memory management aspect of the "intermediate" objects in your example.
Were they just created or did they always exist?
They may have always existed, or they may have just been created. The beauty of objective-c is that you, as a consumer of those objects, don't have to care.
Can I retain them, and if I release the object that created them, will they be released as well?
You don't need to retain them if you're just passing them on to some other function, or using them as intermediate values yourself in your own calculations within the function. Say, for example, that you're returning the stringValue from your example function to someone else. There's no point in retaining it just to return it.
If you DO happen to retain it, then yes, you are responsible for issuing a corresponding release message as some point. You might, for example, retain the stringValue from your example if you want to hold on to that value as a property in your own instance. Objective-C uses reference counting. If you need that object to stick around for a long time, you must retain it so that someone else's release message doesn't cause it to vanish if the retain count falls to 0.
Are they autoreleased?
Depends. Let's say you ask for a string from instanceOfNSWhatever. If instanceOfNSWhatever has to create that string just special for you (in order to service your request), but doesn't otherwise care about that string, then yes... instanceOfNSWhatever probably put that string into the autorelease pool. If the string was already a property of instanceOfNSWhatever and it was just sending it to you in response to your request, then no, it probably wasn't autoreleased.
Again, the beauty is: you don't know and don't need to care. Since instanceOfNSWhatever created the string, it is responsible for managing it. You can ignore the memory management unless you add to the string by sending it a retain message.
What if I run [instanceOfNSWhatever stringValue] a million times in a loop? Can I dispose of all those NSStrings as needed?
No need. Again... stringValue isn't yours to manage because you didn't create it. As a technical note, if instanceOfNSWhatever really did have to create 1 million copies of stringValue to service your 1 million calls, it probably put them all in an autorelease pool, which would be drained at the end of the current cocoa event loop. Fortunately, unless you send each of those stringValue objects a retain message, you can gleefully ignore the memory management question here.
You basically manage all your memory according to the Memory Management Programming Guide for Cocoa. In short, however, you basically only need to worry about objects that you "own". You own an object if you create it (in Cocoa, you create an object by specifically allocating it using alloc or copying it using copy or one of their derivatives). If you own an object, you are responsible for releasing it when you are finished with it.
Any other object is, therefore, not owned by you. If you need to use such an object for any extended period (for example, outside the scope in which you received it), you need to specifically take ownership of the object by either sending it a retain message or copying it.
To answer your last question, if you are creating a lot of temporary objects in a loop or some other way, you can create your own autorelease pools. See the documentation for NSAutoreleasePool for more information about using them. Please note, however, that you should really only do this after you've profiled your application and found that it is using too much memory and would benefit from this kind of optimization.
Finally, if you are creating and releasing a lot of heavy objects and don't want to rely on autorelease pools, you can specifically allocate and initialize them and then make sure to release them on your own as soon as you're finished with them. Most objects that have convenience creators have similar initializers for creating the object specifically.
When working on the iPhone/iPod Touch, the autorelease objects are released when your application exits. This may be what you don't want. Especially when working with images or large chunks of data. To insure large pools of memory that are tagged autorelease get released sooner, create local autorelease pools. Like this:
NSAutoreleasePool *localPool = [[NSAutoreleasePool alloc] init];
-- do something that creates large autorelease memory blocks --
[localPool drain];
If you don't do this, you will find your application exiting unexpectedly.
I'll tell you a simple rules I wish I'd known when I first started Objective-C :)
If an method contains the words "alloc" or "copy" then you must [release] the object when finished.
If a method does not contain these words, you must [retain] it for it to remain valid outside of your function.
If you call [retain] you must later call [release] when finished.
This covers practically all you need to know about the basics of memory management.
ObjC makes heavy use of what are known as "auto release" pools. Objects returned from non alloc/copy functions are placed into these pools and automatically freed after your function exists.
That is why you do not need to release the results of something like [obj stringValue].

What is the cost of using autorelease in Cocoa?

Most of Apples documentation seems to avoid using autoreleased objects especially when creating gui views, but I want to know what the cost of using autoreleased objects is?
UIScrollView *timeline = [[UIScrollView alloc] initWithFrame:CGRectMake(0, 20, 320, 34)];
[self addSubview:timeline];
[timeline release];
Ultimately should I use a strategy where everything is autoreleased and using retain/release should be the exception to the rule for specific cases? Or should I generally be using retain/release with autorelease being the exception for returned objects from convenience methods like [NSString stringWithEtc...] ?
There are two costs:
(Assuming you have an option to avoid autoreleased objects.) You effectively unnecessarily extend the lifetime of your objects. This can mean that your memory footprint grows -- unnecessarily. On a constrained platform, this can mean that your application is terminated if it exceeds a limit. Even if you don't exceed a limit, it may cause your system to start swapping, which is very inefficient.
The additional overhead of finding the current autorelease pool, adding the autoreleased object to it, and then releasing the object at the end (an extra method call). This may not be a large overhead, but it can add up.
Best practice on any platform is to try to avoid autorelease if you can.
To answer the questions:
Ultimately should I use a strategy where everything is autoreleased and using retain/release should be the exception to the rule for specific cases?
Quite the opposite.
Or should I generally be using retain/release with autorelease being the exception for returned objects from convenience methods like [NSString stringWithEtc...] ?
You should always use retain/release if you can -- in the case of NSString there is typically no need to use stringWithEtc methods as there are initWithEtc equivalents.
See also this question.
I have to disagree with Jim Puls - I think that not using Autorelease makes debugging more difficult, because you are more likely to find yourself accidentally leaking memory. Of course Clang static analyzer can pick up some of these instances, but for me, the slight overhead costs in habitually using autorelease are far overshadowed by my code being less likely to be buggy.
And then, only if I have a tight loop I need to optimize will I start looking at performance. Otherwise this is all just premature optimization, which is generally considered to be a bad thing.
I'm surprised nobody has mentioned this yet. The biggest reason to avoid autoreleased objects when you can has nothing to do with performance. Yes, all of the performance concerns mentioned here are absolutely valid, but the biggest downside to autorelease is that it makes debugging significantly more difficult.
If you have an overreleased object that's never autoreleased, it's trivially easy to track down. If you have a user-reported crash that happens intermittently with a backtrace somewhere south of NSPopAutoreleasePool, good luck...
I generally use autoreleased objects these days because they tend to result in simpler, easier to read code. You declare and initialize them, then let the drop out of scope. Mechanically they exist quite a bit longer, but from the perspective of the person writing the code it is equivalent to a stack declared object in C++ automatically being destructed when the function returns and its frame is destroyed.
While there is an efficiency loss, in most cases it is not significant. The bigger issue is the more extant objects and later memory recovery can lead to a more fragmented address space. If that is an issue it usually is fairly simple to go in and switch to manual retain/release in a few hot methods and improve it.
As others have said, readability trumps performance in nonperformance sensitive code. There are a number of cases where using autoreleased objects leads to more memory fragmentation, but in any case where the object will outlive the pool it will not. In those cases the only price you are paying is finding the cost of finding the correct autorelease pool.
One benefit to using autorelease pools is that they are exception safe without using #try/#finally. Greg Parker ('Mr. Objective-C') has a great post explaining the details of this.
I tend to use autorelease a lot as its less code and makes it more readable, IMO. The downside, as others have pointed out, is that you extend the lifetime of objects, thus temporarily using more memory. In practice, I have yet to find overuse of autorelease to be a significant issue in any Mac app I've written. If high memory usage does seem to be an issue (that isn't caused by a genuine leak), I just add in more autorelease pools (after profiling to show me where I need them). But, in general, this is quite rare. As Mike Ash's post shows (Graham Lee linked to it), autorelease pools have very little overhead and are fast. There's almost zero cost to adding more autorelease pools.
Granted, this is all for Mac apps. In iPhone apps, where memory is more tight, you may want to be conservative in your use of autorelease. But as always, write readable code first, and then optimize later, by measuring where the slow/memory intensive parts are.
The costs are:
The time to locate the current thread's autorelease pool and add the object to it.
The memory occupied by the object until it is released at some later point.
If you want to be very conservative with your memory usage, you should avoid autorelease. However, it is a useful technique that can make code more readable. Obsessively using retain/release falls under the umbrella of "premature optimization."
If you are in Cocoa's main event handling thread (which you are most of the time), the autorelease pool is emptied when control returns to the event handler. If your method is short and doesn't loop over large amounts of data, using autorelease to defer deallocation to the end of the run loop is fine.
The time to be wary of autorelease is when you are in a loop. For example, you are iterating over a user's address book and perhaps loading an image file for each entry. If all of those image objects are autoreleased, they will accumulate in memory until you have visited the entire address book. If the address book is large enough, you may run out of memory. If you release the images as soon as you are done with them, within the loop, your app can recycle the memory.
If you can't avoid autoreleasing inside a loop (it's being done by code you didn't write and can't change), you can also manage an NSAutoreleasePool within the loop yourself if needed.
So, be mindful of using autorelease inside loops (or methods that may be called from loops), but don't avoid it when it can make code more readable.
As I understand it, the main downside to using autorelease is that you don't know when the object will finally be released and destroyed. This could potentially cause your app to use a lot more memory than it needs to if you have a lot of autoreleased objects hanging around but not yet released.
Others have answered whether you should autorelease, but when you must autorelease, drain early and drain often: http://www.mikeash.com/?page=pyblog/autorelease-is-fast.html
I notice the code sample you provided is for the iPhone. Apple specifically recommends avoiding autoreleased objects for iPhone apps. I can't find the specific reasoning, but they were hammering this point at WWDC.
One side note to keep in mind is if you are spawning a new thread, you must setup a new Autorelease pool on that thread before you do anything else. Even if you are not using autorelease objects, chances are that something in the Cocoa APIs is.
Old thread, but chipping on for the benefit of newer readers.
I use autorelease vs retain/release depending on the risk of autorelease bugs specific to an object and the size of the object. If I'm just adding some tiny UIImageViews, or a couple of UILabels to my view, autorelease keeps the code readable and manageable. And when the view is removed and dealloced, these subviews should get released soon enough.
If on the other hand we're talking about a UIWebView (high risk of autorelease bugs), or of course some data that needs to be persistent till the 'death' of the object, retain/release is the way to go.
Honestly, my projects have not gotten that big yet, where the additional 'staying-time' of autoreleased objects would create a memory problem. For complex apps, that concern is legitimate.
In any case, I don't think a one-size-fits-all approach would be right. You use whatever approach - or combination of approaches - is right for the project, keeping all the factors mentioned above in mind.