How to Think in terms of Object Oriented Programming? [closed] - oop

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 10 years ago.
i've been interested in game programming for a while and tried to read quite a lot of books on OOP. The problem is for the most part the books show you code and say "add this here" "add this there" but they fail to explain "the big picture" of OOP instead of jumping around. What i want to know i how to think in terms of OOP. For example i've read this thread Object Oriented application problems in game development which gives you some good insight on howto THINK about your classes (like, player "has", "can"....world "listens"). What i would like some help with is a way of thinking, to make the right questions order to plan well which things should be left for a "player class" to do, which things to leave for the "world class" to do, which things to make "private" and which to leave "public", etc. I want to answer the "Why" not the "Hows" I don't want the code, i want the Questions or Mind Set for OOP to become a natural way to organize code.
For example, if i am dealing with collision detection. Should i leave this for the "world" to check?, should i leave it for the player to check? Which question should i ask myself?
Sorry for the "broad" question, but anything would help. From a good "book" to some tips.
PD: I do not have mucho programming experience
Best regards,

Stop reading books and get out there and program. Learn Java. Use a book to do it, but don't just go through the motions, don't download the code write it yourself. In the beginning you will wonder what is the point of OOP, but then you will get into more complex problems and you will start to appreciate the freedom that OOP gives you. Things like inheritance, encapsulation, and polymorphism are just terms right now for you. You kinda know what they mean but you haven't programmed enough to use the concepts. Once you use them and make classes that exemplify the concepts then you start to learn real object oriented programming. You shouldn't focus on making your game OOP, you should focus on making OOP fit your game.
So moral of the story is go program.

Write, write software. People make too big of a deal out of OOP. It's merely an approach to achieve certain design principals such as modularity and low coupling. You experiment and see what makes code - good code, how to make code flexible and maintainable. then you will understand the principles that lead to a good design, whether purely functional, procedural, OOP, or any other paradigm.

I think the key to learning OOP is indeed writing code, but start to think in terms of how you would model the real world - i.e., a car object has attributes of doors, tires, engine, and so on, while the behaviors would be perhaps start engine, change oil, ect....free your mind and think of things in a method that will relate to how you can make writing code less cumbersome and complex. Some problems are inherintly complex, but OOP can help you to sort it out and think of things in a real world fashion. You can do it...just start trying....

I read earlier edition of "Object-Oriented Thought Process" and found the book immensely helpful in understanding the whole OOP paradigm.
http://www.amazon.com/Object-Oriented-Thought-Process-3rd/dp/0672330164/

I guess the best way to 'grock' the concept of Object Oriented Programming is to think of code as modules, or building blocks - write code so it can be modularized in this fashion, then you can reuse them whenever you need that code by simply calling them as needed instead of writing the same code over and over and over again. It's as much a discipline as well as a taught subject. It is also helpful to document your code so when you go back later to reuse it - you know what kind of arguments it takes, what kind of output it generates, and how it does what you wrote it to do.

As you have said, this is a very broad question. With experience, you will have a better sense of when to use what.
While it is nice to know the "whys", remember that knowing the "hows" builds a good foundation for you to understand the "whys".
Now, to answer the specific ones that you have brought up. Think of public as something you would put in the API. If you have a "player class", what do you want the rest of your code to do with it? You want to interact with it in some sense. What is the interface to interact with the "player class"? Those that are your interface should be "public".
So what are the things that should be private? For example, if there is some attribute to the player class that has to be in a valid range (let's say between 1 to 100). How do you prevent people (other parts of the code) from corrupting that? You use private for that. This prevents other people from setting the value to 1001. This way, if it ever gets into a bad state, you know it's the class that screwed up, not the rest of the code.
As for designs, remember that designs change. When you first set out with your program, you may decide the one class should do the collision detection. (That is, your "world" has a collision detector) Maybe at first you just write your "world" with the collision detector. And later on you refactored the code out and have a class called "Collision detector". Then later on you may decide it goes somewhere else, but it's easy since you can just have another object to "have a" Collision detector.
Point is, if you make your code modular enough, this will be easy. There are no hard rules. You first write your code with the design you have in mind. Along the way you are going to find better ways of doing things.

Related

Will Design Patterns solve object communication? [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 10 years ago.
I have been researching and looking for answers here to a problem that I suspect might be solved by a better understanding of design patterns. I think the problem is that I am a self-taught coder and people seem to tend to assume familiarity with a lot of esoteric terminology; I have ended up in Wikipedia spirals trying to determine what some phrases mean.
That said - on to the coding/structural problem.
Actually, just before I start, I should point out that I may well be making unknown presumptions in the way the code is structured in my question. If this is the case, could folks suggest alternatives to what I'm suggesting? I'd really appreciate learning how to better code as opposed to simply being told I'm doing it wrong.
OK...
Let's say we have a Room class, which has 4 Walls, a Ceiling and a Floor. These are instantiated 'inside' the Room. The Room also has a Table which has 4 TableLegs, again instantiated inside the Table, inside the Room. (This, I believe, is Composition, but please correct me if I've got that wrong!).
Finally, the problem:
If someone, somehow, pushes the Table, the TableLeg(s) will need to check the type of Floor they're standing on to trigger the appropriate sound. This, currently would be my solution:
The Table dispatches an event. The Room listens for that 'table pushed' event, quizes the Floor to determine its type, then passes that type to a method on Table, which in turn passes it to the TableLegs.
This, to me, seems fairly inelegant; hence my suspicion that knowledge of design patterns might be useful.
Is there something fundamentally wrong about the structure I've described that I'm not appreciating? If so, what is the alternative?
Finally, I have heard of the Gang of Four book. If that's my first port of call, is it written in an accessible style or will I have to have studied computer science to grasp it?
Sorry for the long, design-pattern-beginner's question.
The Floor could listen for objects Events. The Event interface could expose information about object geometry, material, etc. Then the Floor could check for collisions and play a sound.
I recommend the book Head First Design Patterns
I don't know if I can answer your question, but I can tell you something about the "Design Patterns" book.
It was an instant classic when it was published in 1994/1995. With examples in C++ and Smalltalk (there was no Java or C# back then), it listed solutions to 26 common problems in object-oriented programming. It provided a format for documenting forces and resolutions that was eagerly snapped up by academic conferences for years after. Lots of programmers, including myself, were studying it like holy writ in the hope that a single book could make them superstars.
Then reality set in.
Functional programmers said the patterns were work-arounds for flaws in OOP. What's the fuss? They could do these things without resorting to patterns.
The usual response on first reading the book is to try and fit as many patterns as you can into whatever code you happen to be writing at that moment.
You'll find yourself using the pattern names in design sessions: "I think we need a Chain of Responsibility here!"
Eventually you calm down and realize that patterns aren't the answers to your problems. The best way to use them is to think hard about your problems and solutions and suddenly realize that your answer happens to fall into a pattern.
As for your problem, I don't think you need a pattern. Have the Table send a message to the Floor to ask about its type before you generate the sound. That'll do it. Simplicity is a virtue.

What is a good standard exercise to learn the OO features of a language? [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 10 years ago.
When I'm learning a new language, I often program some mathematical functions to get used to the control flow syntax. After that, I like to implement some sorting algorithms to get used to the array/list constructs.
But I don't have a standard exercise for exploring the languages OO features. Does anyone have a stock exercise for this?
A good answer would naturally lend to inheritance, polymorphism, etc., for a programmer already comfortable with these concepts. An ideal answer would be one that could be communicated in a few words, without ambiguity, in the way that "implement mergesort" is completely unambiguous. (As an example, answering "design a game" is so vague as to be useless.)
Any ideas?
EDIT: I have to remark that the results here are somewhat ironic. 10 upvotes and (originally) 5 favorites suggest that this is a question others are interested in. Yet the most upvoted answer is one that says there is no good answer. Oh well. I think I'll look at the textbook below, I've found games useful in the past for OO.
I can't imagine there could be a standard set of exercises that would naturally introduce OO features of a programming language to everybody. A lot of the introductory OO tutorials are full of Animals, Cats, and Dogs which does not really cut it for me at least. Find a problem domain in OO you've struggled with a lot, and try to use that as your set of stock exercises for each language you pick up.
The OO constructs that we are used to thinking in terms of may not make sense in a language. Javascript comes to mind which shakes the entire foundation of how we think about objects in general. That said, you shouldn't adapt to a language but rather adapt the language for your purposes. Over time as your knowledge repository grows and improves with experience, you'll naturally want to implement what you think is best in each programming language that you use regardless of what the language offers.
Good question...
In my opinion the best teacher is just find a simple example of OO features and try to write something alone, creating new examples for Yourself and trying develop simple application in which You can connect all features of OO .
Implementing algorithm like merge sort which don't use OO feature, cause they don't need it is useless. Try real useful programs.
I remember when learning OO i write application with general "Animal" interface with methods and class which inherit it, like "amphibian". it was fanny time ;)
Some fun: implement the Shape/Circle/Ellipse hierarchy without falling into the trap (it can be done very nicely in Java, Scala, etc.).
edit implement it before looking at the proposed solutions in the Wikipedia article :)
I've used Hunt The Wumpus. The original implementation in BASIC was not at all OO, but if you start fresh it lends itself pretty nicely to this.
Here's what I use:
http://homepage.mac.com/s_lott/books/oodesign.html
I've done it enough times that it's "standard" in my opinion.
This might be too specific, but it's what I credit for really getting me to understand OOP personally. For my work I had to write code to extract data from a large variety of different sources. It seemed straightforward to me at the time that I should tackle the problem from the perspective of designing various "DataProvider" classes. What only gradually became clear was how much code I could reuse by breaking the different kinds of providers down into hierarchical categories, like this:
DataProvider
TextDataProvider
HtmlDataProvider
CsvDataProvider
XmlDataProvider
BinaryDataProvider
...and so on. I would suggest that any problem like this--where you need to accomplish a certain kind of task (in my case, extracting data) in a bunch of different ways (e.g., from multiple sources)--will be a great opportunity to delve into OOP and hopefully learn to appreciate how useful it is.
I personally find the best way to learn OO, is to write your own testing framework.
I find a layout of a Test Runner, owning one or more Test Suites, which each have their own Test Cases enough of a starting point, but you can easily grow it from there, and it might even be something you care to use in the future.
Alternatively, if you want something completely throw away, there's always Enterprise FizzBuzz. :)

How can I practice better object-oriented programming? [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 10 years ago.
I have been programming in object-oriented languages for years now but secretly I look at some of the things my colleagues do with envy. A lot of them seem to have some inner OO instinct that I don't have - no matter how hard I try. I've read all the good books on OO but still can't seem to crack it. I feel like the guy who gave 110% to be a professional footballer but just didn't have the natural talent to make it. I'm at a loss and thinking of switching careers - what should do I?
I would say focus less on the OO programming and focus more on the OO design. Grab a paper and a pencil (or maybe a UML modelling tool), and get away from the screen.
By practicing how to design a system, you'll start to get a natural feel for object relationships. Code is just a by-product of design. Draw diagrams and model your application in a purely non-code form. What are the relationships? How do your models interact? Don't even think about the code.
Once you've spent time designing... then translate it to code. You'll be surprised at just how quickly the code can be written from a good OO design.
After a lot of design practice, you'll start seeing common areas that can be modularized or abstracted out, and you'll see an improvement in both your designs and your code.
The easiest way is to learn concepts such as SOLID, DRY, FIT, DDD, TDD, MVC, etc. As you look up these acronyms it will lead you down many other rabbit holes and once you are done with your reading you should have a good understanding of what better object-oriented programming is!
SOLID podcasts: http://www.hanselminutes.com/default.aspx?showID=168, http://www.hanselminutes.com/default.aspx?showID=163
SOLID breakdown: http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
DRY: http://en.wikipedia.org/wiki/Don%27t_repeat_yourself
FIT: http://www.netwellness.org/question.cfm/38221.htm
DDD: http://dddcommunity.org/
DDD required reading: http://www.infoq.com/minibooks/domain-driven-design-quickly
TDD: http://en.wikipedia.org/wiki/Test-driven_development
MVC: http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
And yes, rolling up your sleeves and coding is always a good idea. Make a small project to the best of your current abilities. Then read an article from above. Then refactor your code to meet the needs of what you just read. Repeat until you have refactored the hell out of your code. At the end you should not only know what OO is all about but you should be able to explain why it is important and how to get their the first time. Learning how to refactor is a key to good code too. What is right now is not right tomorrow.
Too many people think of coding first, objects, last.
You can read all the books you want but that's not going to teach you how to think in an object-oriented fashion--that takes practice and a certain methodology.
Here are a few methods that have
helped me: When you're away from
work and open-minded you can
practice by looking at everything as an object. Don't look at these
objects and wonder how you're going
to program them, look at them as
properties and functions only and
how they relate or inherit from each
other. For example, when you see a
person, they are an object and
therefore would represent a class.
They have properties like hair
color, skin tone, height, etc. They
do certain functions as well. They
walk, talk, sleep, etc. Some of the
functions these people do returns
results. For example, their working
function returns a dollar amount.
You can do this with everything you
see because everything is an object.
Bicycle, car, star, etc.
Before coding a project, design it by
using post-it notes and a dry-erase
board. This will make good practice
until you get the hang of this.
Think of your specific
object/function/property. Each of
those items will have its own
post-it note. Place them as a
hierarchy on the dry-erase board. In
this regard, function/properties
will be placed under the object. If
you have another object, do the same
for that one. Then ask yourself, do
any of these post it notes
(objects/functions/properties)
relate to each other. If two objects
use the same function, create a
parent object (post-it note) and put
it above the others with the
reusable function under the new
note. Draw a line using the
dry-erase marker from the two child
objects to the parent.
When all this is done, then worry
about the internals of how the class
works.
My suggestion would be to learn something different.
Learn functional programming, and apply what you learn from that to OOP. If you know C++, play around with generic programming.
Learn non-object-oriented languages.
Not just because you should use all these things as well (you should), or because they should completely replace OOP (they probably shouldn't), but because you can apply lessons from these to OOP as well.
The secret to OOP is that it doesn't always make sense to use it. Not everything is a class. Not every relationship or piece of behavior should be modeled as a class.
Blindly trying to apply OOP, or striving to write the best OOP code possible tends to lead to huge overengineered messes with far too many levels of abstraction and indirection and very little flexibility.
Don't try to write good OOP code. Try to write good code. And use OOP when it contributes to that goal.
In many fields there's a "eureka" moment where everything kind of comes together.
I remember feeling frustrated in high school geometry. I didn't know which theorem to apply on each step of the proof. But I kept at it. I learned each theorem in detail, and studied how they were applied in different example proofs. As I understood not only the definition of each theorem, but how to use it, I built up a "toolbox" of familiar techniques that I could pull out as needed.
I think it's the same in programming. That's why algorithms, data structures, and design patterns are studied and analyzed. It's not enough to read a book and get the abstract definition of a technique. You have to see it in action too.
So try reading more code, in addition to practicing writing it yourself. That's one beauty of open source, you can download lots of code to study. Not all of that code is good, but studying bad code can be just as educational as studying good code.
Learn a different language! Most developers using only Java (just as an example) have only a limited understanding of OO because they cannot separate language features and concepts. If you don't know it yet, have a look at python. If you know python, learn Ruby. Or choose one of the functional languages.
The aswer is in your question ;)
Practice, practice, practice.
Review your own code and learn from the mistakes.
TDD has helped me most in improving my overall skillset including OOP.
The more code you write, the more you will notice the pitfalls of certain programming practices. After enough time, and enough code, you will be able to identify the warning signs of these pitfalls and be able to avoid them. Sometimes when I write code, I will get this itch in the back of my mind telling me that there may be a better way to do this, even though it does what I need it to. One of my greatest programming weaknesses is "over-analyzing" things so much that it starts to dramatically slow down development time. I am trying to prevent these "itches" by spending a little more time on design, which usually results in a lot less time writing code.
...secretly I look at some of the things my colleagues do with envy. A lot of them seem to have some inner OO instinct that I don't have - no matter how hard I try...
I think you have answered your own question here. Reading good code is a good start, and understanding good code is even better, but understanding the steps to get to that good code is the best. When you see some code that you are envious of, perhaps you could ask the author how he/she arrived at that solution. This is entirely dependent on your work environment as well as the relationships with your colleagues. In any event, if anyone asks me the thought process behind any code I write, I don't hesitate to tell them because I know I would want them to do the same for me.
Language designers have interpreted "Object Oriented Programming" in different ways. For instance, see how Alan Kay, the man who first used the term OOP, defined it:
OOP to me means only messaging, local
retention and protection and hiding of
state-process, and extreme
late-binding of all things. It can be
done in Smalltalk and in LISP. There
are possibly other systems in which
this is possible, but I'm not aware of
them.
(Quoted from http://userpage.fu-berlin.de/~ram/pub/pub_jf47ht81Ht/doc_kay_oop_en).
It might seem strange that he don't consider Java and C++ OOP languages! But as the designer of one of the first and best OOP languages (Smalltalk) he has his own valid reasons for that. Why did Alan Kay consider Lisp an Object Oriented language but not Java? That question demands serious consideration by anyone who claims to understand OOP.
Erlang has an altogether different implemntation of OOP, Scheme has another.
It is worth considering all these alternative views. If possible learn all these languages! That will give you a broader outlook, put some new and powerful tools in your hand and make you a better programmer.
I have summarized my experiments with implementing an OOP language, based on ideas borrowed from Smalltalk, Scheme and Erlang in this article.
public void MasteryOfOOP()
{
while(true)
/* My suggestion is: */
DO: find a lot of well-written object oriented code and read it. Then
try to use the insights from it on your own coding. Then do it again. Then
have a colleague who is a good OOP look at it and comment. Maybe post a chunk
of your code on SO and ask for how it could be improved.
Then read some more of those books. Maybe they make a little more
sense now...?
Now go back to the top of this post, and do it again.
Repeat Forever.
}
}
If you're lost as to how to design object-oriented systems, start with the data. Figure out what stuff you need to keep track of and what information naturally goes together (for example, all of the specs of a model of car group together nicely).
Each of these kinds of thing you decide to track becomes a class.
Then when you need to be able to execute particular actions (for example, marking a model of car as decommissioned) or ask particular questions (for example, asking how many of a given model of car were sold in a given year), you load that functionality onto the class it interacts with most heavily.
In general, there should always be a pretty natural place for a given bit of code to live in your class structure. If there isn't, that signals that there's a place where the structure needs to be built out.
There's too much information about objects. The most important thing is to master the basics and everything falls into place more easily.
Here's a way to think about objects. Think about data structures in procedural languages. They are a group of fields without behaviour. Think about functions that receive pointers to those data structures and manipulate the latter. Now, instead of having them separate, define the functions inside the definition of the the structures and assume the functions usually receive a pointer to the data structure to manipulate. That pointer is called this. In sum, think about objects as the combination of status (data) and behaviour (methods - the fancy name for functions in OOP).
This is the absolute basic. There are three more concepts you must absolutely master:
Inheritance - This is all about code reuse.
Encapsulation - This is all about hiding the implementation from the interface. Simply put, everything ought to be private until proven otherwise.
Polymorphism - It doesn't matter the type of the reference variable, but the type of the actual instance to know which behaviour (method) is called. Java doesn't make it easy to have this concept very visible because by definition everything is polymorphic. .Net makes it easier to understand as you decide what is polymorphic and what is not, hence noticing the difference in behaviour. This is achieved by the combination of virtual and override.
If these concepts are very well understood, you'll be fine.
One last final tip: You mention the best books. Have you read "Thinking in Java" by Bruce Eckel? I recommend this book even to people who are beginning in .Net, as the OOP concepts are clearly laid out.
Become more agile, learn junit testing and study about Domain Driven Design. I suggest the book Domain-Driven Design: Tackling Complexity in the Heart of Software although it's a bit tough at some points.
OOP skills comes over time. Reading 1, 2 ...10 books doesn't cut it. Practice writing some code. If you are working in a programming enviornment...that can be helpful. If not try getting into one. Offer to develop some application(s) for free. You have to get your hands dirty. Remember...no application is perfect from the ground up.That's why there is re-factoring.
Also...don't get carried away with the OOP too much...it somes over time. Worry about developing fully functional applications.
Try some programming in Self, one of the most pure OO languages around. So pure, in fact, that it doesn't even have classes, only objects. It also doesn't have variables, fields, statics, attributes, only methods. Also interesting is the fact that every object in the system is also an object on the screen and vice-versa.
Some of the interesting papers on Self are Prototype-Based Application Construction Using SELF 4.0 (the Self tutorial), Self: The Power of Simplicity and Organizing Programs Without Classes. Also, Self: The Video (Randall B. Smith; Dave Ungar) is terrific, having two of the language's designers explain Self's ideas.
This works for pretty much any concept, actually, at least for me: find the language which most purely embodies the concept you want to learn about and just use it.
OO finally clicked for me after I tried to program a bank-like program that handled transactions, calculated interest, and kept track of it all. I did it while I was learning Java. I would suggest just trying it, completing it, and then when you're done go look at a GOOD solution and see what you could've done better.
I also think OOP skills strenghten mostly with practice. Consider changing your company, if you've been there for more than 3 years. Certainly, this is not valid for all jobs, but often a man gets used to the projects and practices at a company and stops advancing as time passes.
Roll up your sleeves and code!
You said the answer yourself: practice. Best solution for this is to develop a game. Use the concepts you learnt in the books there.
Have you read the chapter on OO from the first edition of Scott Meyers "Effective C++" book? It didn't make it to later editions, but it was a great explanation. The title was basically "say what you mean, mean what you say" about suitable conventions.
Actually, you might like to see my answer to a similar question over here.
HTH
cheers,
OOP is not a thing you can master by reading thousands of books. Rather you have to feel the inner concepts. Read anything but try to feel what you read. Build a concept in the back of your mind and try to match those concepts when you face a new scenario. Verify and Update your concepts as you explore new things.
Good luck!
Plan things out. Ask yourself how you want your objects to relate to eachother and seek out how things can be changed and modularized.
Code things in such a way that if you wanted to change 1 piece of the code, you only have to change that 1 piece of code and not 50 instances of it.
beer helps. seriously. lie out on a couch with an A3 sized scribble pad, a pen and a beer. Lock the dog, cat and wife outside. And think about the problem while relaxed. Don't even dare draw an API on it!
Flowcharts, Responsibity cards (CRC) and beer (but not too much) go a long way.
Easiest way to refactor code is to not have to in the first place.
http://misko.hevery.com/code-reviewers-guide/
Those small simple rules will make you a better OO programmer. Follow the rules religiously as you code and you will find your code is better than it would otherwise be.
You'll also want to learn the Solid Principles: http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
As much as these principles and ways of programming cause debate, they are the only way to truly write excellent code.
You may already write code this way and not know it-- if so, great. But if you need a goal to strive towards, these are the gold standard.
Give up! Why do you need that that OOP? Just write some usable app. Doesnt metter using OOP, procedual or functional approach.
Whataver approach you choose Python language should be sutable to practice it.
You're my target audience. Look at Building Skills in OO Design
Perhaps this can help.

Importance of OOP concepts? Are they really used to full extent? [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 8 years ago.
Improve this question
The question seems pretty simple, and so is the answer. I am a developer who recently started working. So far I had taken few bachelor and master level courses on OOP. And yet I am not comfirtable and confident with OOP concepts. Recently, I was searching for employment opportunities and I found that many employers were keen to know how much confident I am on OOP concepts.
I have a very strong theorotical knowledge on OOP concepts. Although this theorotical knowledge is helping me in clearing the interviews and getting a job but when it comes to implementation I am getting dumb. If you ask me what is reflection then you will get a perfect answer from me, but if someone asks me why and where do we use it, then I get fumbled.
Now I really want to know what I should do when I am not getting an opportunity to implement all or most of the OO concepts in my projects.
Also I really feel with all the latest development tools and programming environments, many of the programmers are getting pampered to use already built components, frameworks and libraries and this is might create a vacuum of good architects.
I want to become a successful architect and for that I think I must be very strong in this area.
Then I thought of learning NHibernate where you will be dealing with objects entirely.
Now what I need is few valuable tips that would help me in grasping all or most of the OOP concepts.
It sound like you're missing real programming experience. Nothing will substitute that.
Go working, exercise, read, learn from your more experienced colleagues. Eventually you'll get it.
As for very advanced tools, you are correct. They produce code monkeys in ever increasing amounts. If you see it right now you are on a good start. Just keep to the path. Good architects will always be needed and valued.
You want to start looking at design patterns. Knowing the when, how and why of using OOP is more valuable than knowing OOP itself.
Frameworks are great and I don't fault people for using them. But, there is still a lot of room for great architects in this space. Exploit the gap of programmers knowing how to use them, but not why or when. Frameworks quickly become a hammer looking for a nail for many developers. Open source is your friend here - dive into the source code and learn them from the inside out so you really understand what's being done and why.
In my experience, you learn the "conceptual" side of development from school and the "applications" side from real experience. There is no substitute for working on the job; no matter how much schooling I've had it never equates to what I've learned doing the real work. This is why it's also a good idea to get an internship in college if you're able.
As for the value of OOP itself, I find that it's most useful in large projects and in team projects. The whole point is to break down the solution into workable "conceptual" elements which makes intercommunication between team members easier as well as visualizing the solution. Visualization is the other big pro to OOP.
One thing to note about OOP IMHO is that entry level developers tend to overuse a lot of the OOP concepts. Not everything requires inheritance. Design patterns are extremely useful but also shouldn't be over applied. Look at your problem and first try to think of a solution on your own then compare it to known patterns and see if they provide a better answer. Simplicity can't be overrated.
Also, playing with tools like UML editors and Mind Mappers (such as XMind) are helpful in getting into the right frame of mind.
Check and see if there are any programming groups around you too; I find it's a good way to meet people that you can talk programming with and another advantage of OOP is its much easier to communicate programming ideas with.
Your next stop should be to look into design patterns (Applied OO). For an introductory text, check out Headfirst Design Patterns.
Interesting question. To some extent I've grown up with Object programming, I've evolved as the various frameworks have evolved, I'd never before considered how it would feel to come to a landscape where so many sophisticated frameworks already exist. Their very presence tends to inhibit that degree of fumbling and stumbling and generallly getting it wrong that leads to deeper understanding.
My perception though is that serious development is still a matter of good design, it's not all just fill-in-the-gaps, hey IOC framwork tell me what to do, programming.
You can enhance your theoretic knowlege by studying the "how" of the framworks you use. But I guess what you need is practical experience, can't comment upon what's open to you in your place of work, but if you can't get it there you may need to do some "hobbyist" or open source development.
One thing I would recommend is trying to get involved in design discussions, try to get your designs reviewed by experienced developers. With any luck they may even say: "hey why didn't you use reflection there ..."
It is the 'thinking' that is important, in OOP one needs to change thinking
while going about programming/developing in oop environment or using OOP
paradigm.
I have faced many a times this question myself: why use OOPL or
Object Oriented Programming Language when I can develop software in Procedural
Programming Language? Why use OOP methodology at all? What benefit does it have
what other non-oop doesn't?
I read from many sources (numerous books and articles on the subject to name!)
to trace the real reason, to hit the fundamental underlying idea or principle
for its being there as a paradigm of software engineering. I think what I found
is simple and that's why I suggest to bring a change in thinking.
If we look around we see things that surround us and the things we interact
with, directly or indirectly. We recognize them with names, we gave them.
Whatever the things are, either they exist in real plane or conceptual plane
and we 'know' them 'recognize' them and interact with them. And importantly we
'name' them. This naming is important because to interact with the 'things' and
for that knowledge of that interaction we need 'Names'.
What have you eaten today? Chocolate and coffee. So you have 'interacted' with
chocolate and coffee. Now Chocolate and coffee are edibles we have (humans)
have given names and with those names we recognize them. And also, we, in our
knowledge of our interaction with them - lets say keeping record of our
interaction with chocolate and coffee, know them with names as having
interacted with.
Interaction is a general term I am using here. Actually in our case, in the
example, you have performed an 'action' - eating. Through 'eating' action you
have interacted with chocolate and coffee. Now think this way, you, chocolate,
coffee are entities in the real world through an action came in interaction.
You may say a 'Process'.
What course Alice has enrolled for? Computer Science.
Computer Science does not have a real existence in the world in the sense a man
exists or a tree or a house, or coffee cup or other 'tangible things' exist. It
is a subject, 'conceptual thing'. The study of computer science has some
'topics' to be studied (or to have interaction with through our mental
faculty/processes)e.g discrete mathematics, design and analysis of algorithms,
Data Structure etc. Together they are named, as a subject of study, 'Computer
Science'. Now Alice 'study' (interaction) Computer Science.What is happening
here? OK, if We now think this way and say that Alice is a thing, an object.
Computer Science is a thing, an object.
Coffee is an object. Chocolate is an object. You, again, are an object. We find
that objects interacting with objects. Fantastic! One may exclaim! That's the
real world scenario! Actually it is a generalization reached through
Abstraction.
It is nothing but -at the surface level at least- naming with
meaning. Or you can say 'meaningful naming'. It is a process. It is so natural
and obvious to us that we simply overlook it.
In OOP we simply have to bring ourselves to this form of thinking process,
knowing and reminding ourselves that "Objects interact with Objects". Oh!
There are more than thinking only this. You have to remember that an object
may interact with itself! Think of you, what are you doing when you are
thinking? Yeah! And there is another very important thing I shall come to
in due time. Though I think it is obvious. But in due time. OK. What we
really do with computers? Actually we solve problems. Particularly those
problems which we try to do or solve in our minds. In broad sense we are
simulating mental processes in a machine, so designed by us. Remember AI is
still a far off thing in reality and there are debates both scientific and
philosophical, on whether a computer can become Intelligent at all. Another
way of putting it whether a computer can really simulate a real mental
process. But that's not for us to take here. Leave it!
If we want to solve problems in real life through a computing device we
would like to go as closely in representing the real life as possible.There
comes the term in OOP 'real life modelling'. It can be seen that in solving
real life problems, be it launching a space shuttle, or keeping the customer
and product sale information for processing we do abstraction and do
calculation, which is another form of abstract process, in turn we deal with
objects mentally, in our mind. So we represent real life objects (conceptual
objects such as numbers) in abstraction and deal with them with abstract
processes, as in mathematics. In computer too we would like to represent
objects and also like to represent processes in the form of objects. So here
comes the Object Orientation so to speak to software engineering. Now comes
that 'due time' to deal with another aspect of OO.
To go back to our example, What did you eat? Eating is an action, a form of
interaction. Which can be thought of as process which again can be thought of
as an Object, like a processes is thought of and represented as 'function' or
'routine' or 'procedure' in Non-OOPL. In OOP we can represent (abstract away)
eating as a process embodied as an object. Similarly studying is an object. In
the same line of thinking 'thing' and 'process' both be thought of as objects
and be represented in virtual plane which is computer memory. Therefore
Alice-an Object-Studies-an object-Computer Science-an Object is valid in OOP
parlance as far as our argument goes.
Can we write a piece of code here? Lets try.
class Alice {
private String name;
private String address;
private String stdID;
private Course courseOfStudy;
... other codes...
public void studies(Course sub) {
courseOfStudy=sub;
}
...
public Course getStudyCourse() {
return courseOfStudy;
}
}
class Course {
codes....
}
This way in OOP (here Java code) one can go about writing codes. I have just
given a simplistic coding. One can come up with better coding and design
approach depending on the software in mind to be written. In OOP design is very
important. So in thinking which I mentioned at the beginning the change should
be brought in. That's important! I prefer to go this way when it comes to OOPL
or OOAD, "everything is object".
Well that's what I wanted to say. You may or may not like it but comment and
say your mind.

How do I explain loose coupling and information hiding to a new programmer? [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 10 years ago.
How do I explain loose coupling and information hiding to a new programmer? I have a programmer who I write designs for, but who can't seem to grasp the concepts of loose coupling and information hiding.
I write designs with everything nicely broken down into classes by function (data access is separate, a class for requests, a controller, about 5 classes total). They come back with a modified design where half the classes inherit from the other half (and there is no "is-a" relationship), and many public variables.
How can I get across the idea that keeping things separate makes it easier to maintain?
Ask him if it's a good idea to let you borrow $10 by giving his wallet to you for a moment and taking the money yourself.
The problem is your expectations, not the developers lack of skill. You talk about loose coupling and information hiding as if these are simple facts or mechanical techniques - they are not. Software development is a craft and the only way to get better at a craft is to practice it and slowly and incrementally improve.
You are looking for a shortcut. You want the developer to experience an "ahah!" moment and suddenly see the wisdom in your design. I say, don't hold your breath.
Adopt the mindset of a mentor. If you want him to improve his design skills, don't "hand" him a design, let him to design it! Then review the design with him. This will give him experience, a deeper sense of ownership and more willingness to listen to your suggestions before he is knee deep in implementation.
An aside - I notice that people look for these shortcuts all the time with abstract skills but not with more "physical" skills. Take tennis for example. If you were a tennis coach and a new player kept hitting his forehands long, you wouldn't just show him a YouTube video of a Roger Federer forehand and expect him to "get it". A great forehand takes YEARS of experience as you learn the feeling and use it in different scenarios - its not your muscles learning, its your brain. It is no different with software design. You get good at it by doing it over and over again. You slowly learn from your mistakes and get better at appreciating the consequences of each individual design decision.
The best way to explain these kinds of concepts is to use analogies. Pick something non-programming related and use that to explain the abstract design concepts.
The following image is pretty good at explaining the need for loose coupling:
Try to come up with stuff like this that will amuse and pertain to your new programmer.
Theory will only get you so far.
Make him try to add new features to code he's written a while ago. Then rework the old code with him so it's loosely coupled and ask him to add the same features.
He will certainly understand the avantages of writing good code.
There's nothing like a physical analogy. Walk out to your car and point out how everything complicated, hot and dangerous is pretty well isolated from the fragile human. Sit in the driver's seat and point out some of the important gauges; for example, the coolant temperature, tachometer and speedometer. Note how the gauges are remarkably similar: they all take a scalar value (from somewhere) and represent it by moving a needle to a position between min and max.
However, if you think about what's being measured, the strong motivation to maintain that isolation (aka loose coupling or information hiding) becomes a lot more obvious.
"How would you like to measure the coolant temperature? By looking at a gauge or by sticking your finger into near-boiling liquid?"
"How would you like to measure the engine rotational speed? By looking at a gauge or by letting a multi-thousand RPM crankshaft rip the flesh from your bones as you try to estimate it by hand?"
"How would you like to measure the car's speed? By looking at a gauge or by dragging your foot on the ground as you're roaring down the highway?"
From there, you can build on the concepts of "your coolant temperature gauge is-a gauge. It isn't-a boiling liquid" and so forth to more complicated concepts.
Loose coupling: The parts of a watch may be replaced by others with out breaking the whole watch. For instance you can remove one hand and it will still work.
Information hiding: The clock hands doesn't know that behind them there's a machinery.
Additional concept
High cohesion: All the elements in the watch "module" are strongly related. In this specific scenario, a battery would belong to another module or namespace.
Show him this presentation. Though it's mainly about DI, it's downright brilliant and up to the point.
I would try sitting down with him and working through a couple of peieces of code with him looking over your sholder and you explaining why you are doing what you are doing as you go along. I've found this is normally the best way to explain things.
Ask him to make a change you know it will be hard because of his design and show him how that would happen using yours.
If he complains, tell him the truth: business will ask more bizarre changes, it's a matter of time he will see that.
Just don't talk to him. That should teach him about information hiding. ;-)
I like a credit card for an example.
You have a credit card.
A credit card represents your credit history. It has a balance and a APR. It has permissions and an entire financial state. It has a id, an expiration date, and a security code. The magnetic strip summarizes all of this.
When you go to your local credit-card-accepting establishment, they don't need to know that. They don't want to know that, and it is often very dangerous if they do know that. What they need to "know" is that there is a magnetic strip which will take care of all of this, and (sometimes) that the person holding the card has id to match the name printed on the card.
Giving them more information is either (in the best case) useless, or (in the worst case) dangerous. Requiring them to know which bank to check with, making sure they know how to calculate your particular APR, or allowing them to check your balance is simply silly at that point.
If he's misinterpreting your designs, perhaps a couple pair-programming sessions will be enough to get them on track. I do have to agree with #ThomasD and will expand upon it -- the encapsulation going on here could be you. It could be a simple case of misinterpretation instead of them not understanding the concepts.
I think that OO concepts really need to be learnt practically. One really needs to do these things to understand. I go to school (engineering) and most of my peers don't really get the concept. They know in general that loose coupling is 'good' but not why. They also don't know how to achieve loose coupling. I am working on my final year project now and I got through to them by making them part of the design process. (It helped that they really did understand how and why and had an inkling of its importance)
Given your situation, here is what I would suggest:
1. Make them follow your design exactly (at least for a couple of weeks). If they want to deviate, have them discuss what and why with you. [Time constraints may not permit this].
2. Sit with them on whichever part of the design you are doing next and explain some o0f your design choices to them, with examples. Somethings that are obvious to you may need to be pointed out to them.
3. Be on the lookout for examples, both of good design and bad design and show them how that works better.
The most important task here is of delegation. You have to show them what good code looks like, maybe train them for a couple of hours. Then you agree on when to review and how you can help them (whithin your limited free time (?)) do the task well. The main thing is to get them to identify with and understand good design. Doing these things will help them 'buy-in' to the design. Once they feel it is their design, I am sure they will do better work.
Overall, I think you need to put your foot down and get them to code it right, without stifling their creativity.
I don't really have too much experience in the area. I am just giving my opinion on the subject, based on what worked for me. I hope this helps.
Note
I'd like to add that OO concepts can be learnt from books, while their application can be learnt only by practice. I have added this note in response to a comment by Christopher W. Allen-Poole.
Well if you have to explain it to them then I'm forced to ask: are they really a programmer?
Tell them they need a "college do over"?
That's a hard one because it's such a basic concept. Personally I wouldn't want to handle it because it's like someone is getting paid to learn stuff they should already know but life isn't always ideal.
I'd approach it by finding a problem that's simple enough to solved relatively simple. Public variables are usually handled best by trying to find the source of a problem when you can't see what's changin gthe variables. You can design a scenario for that.
The over-inheritance may not be their fault. They may have learnt in a course designed in the 90s that's trapped in the idea that "everything must inherit". I remember the old examples of Manager extends Employee. It's just BAD. Thing is people get taught this nonsense. Still.
For C++ the Scott Meyer Effective C++ series is probably worth poniting them to (assuming they can be bothered to read something). For Java, Josh Bloch's Effective Java ("favor composition") is along the same lines. Not sure about C#.
These sorts of books give a better approach to inheritance vs composition and also give some good examples of why inheritance is (as Josh Bloch puts it) an "implementation detail". I've also heard it described as "inheritance breaks encapsulation".
I saw a good example once of inheritance vs composition with extending the capabilities of a List in Java and how inheritance required you to know implementation details of the parent to do correct whereas composition didn't. I'll see if I can find it.
If you do Unit Testing, explain it in terms of test-writing. Alternatively, Abstract Classes and Interfaces both use loose coupling and information hiding to great effect. If you explain it to him in terms of other concepts he may already have a handle on, he'll be more likely to appreciate the concept quickly.
Programs are systems of interacting parts.
For a system of interacting parts to work together requires connections between these parts.
The more connections, the more costly the program.
For a fixed number of parts, a system whose parts are unnecessarily connected is more costly than a system whose parts are necessarily connected.
Unneccessary connections can only be formed in a system whose parts are unnecessarily exposed to connections from other parts.
Minimising unneccessary exposure of parts to connection from other parts is fundamental to cost-effective program development.
Loose coupling and information hiding are the fundamentals of connection-exposure minimisation.
This is not optional knowledge for a programmer.
This is fundamental.
You cannot be a cost-conscious programmer without this knowledge.
Asking how to explain loose coupling and information hiding to a new programmer is like asking how to explain surgery to a new surgeon? Or to explain architecture to a new architect? Or how to explain flying to a pilot.
If your, 'New programmers,' don't know loose coupling and information hiding, then they are not, 'New programmers;' they are potential programmers.
Curiously, it probably won't help to tell them to read the original two papers:
i)Loose coupling: 'Structured design,' by W.P. Stevens, G.J. Myers and L.L. Constantine.
ii)Information hiding: http://www.cs.umd.edu/class/spring2003/cmsc838p/Design/criteria.pdf
Just like the move from 16 bit to 32 bit windows applications where processes were given their own address space. This stopped any other process from being able to kill your application when it "accidently" walked over your data.
Moving processes to different address spaces was like treating each process as a class, and hiding the memory internally and decoupling the processes by forcing interprocess communication to only happen via an expected interface ( eg Windows Messages ).
loose coupling means the external code should use the object of derived non abstract class through abstract base class. if any change occur in set of class on which it depend then not neccessory to change in external code i.e. external code really exhibit loose coupling.