Creating simple waveforms with CoreAudio - objective-c

I am new to CoreAudio, and I would like to output a simple sine wave and square wave with a given frequency and amplitude through the speakers using CA. I don't want to use sound files as I want to synthesize the sound.
What do I need to do this? And can you give me an example or tutorial? Thanks.

There are a number of errors in the previous answer. I, the legendary :-) James McCartney, not James Harkins wrote the sinewavedemo, I also wrote SuperCollider which is what the audiosynth.com website is about. I also now work at Apple on CoreAudio. The sinewavedemo DOES use CoreAudio, since it uses AudioHardware.h from CoreAudio.framework as its way to play the sound.
You should not use the sinewavedemo. It is very old code and it makes dangerous assumptions about the buffer layout of the audio hardware. The easiest way nowadays to play a sound that you are generating is to use the AudioQueue, or to use an output audio unit with a render callback set.

The best and easiest way to do that without files is to prepare a single cycle buffer, containing one cycle of the wave (this is called technically a wavetable)
In the playback function called by CoreAudio thread, fill the output buffer with samples read from the wave buffer.
Note however that you will face two problems very quickly :
- for the sine wave, if the playback frequency is not an integer multiple of the desired sine frequency, you will probably need to implement an interpolator if you want to have a good quality. Using only integer pointers will generate a significant level of harmonic noise.
for the square wave, avoid to just program an array with +1 / -1 values. Such a signal is not bandlimited and will alias a lot. Do not forget that the spectrum of a square wave is virtually infinite!
To get good algorithms for signal generation, take a look to musicdsp.org, that's probably one of the best resource for that

Are you new to audio programming in general? As a starting point i would check out
http://www.audiosynth.com/sinewavedemo.html
This is a minimum osx sinewave implementation by the legendary James Harkins. Note, it doesn't use CoreAudio at all.
If you specifically want to use CoreAudio for your sinewave you need to create an output unit (RemoteIO on the iphone, AUHAL on osx) and supply an input callback, where you can pretty much use the code from the above example. Check out
http://developer.apple.com/mac/library/technotes/tn2002/tn2091.html
The benefits of CoreAudio are chiefly, chain other effects with your sinewave, write plugins for hosts like Logic & provide the interfaces for them, write a host (like Logic) for plugins that can be chained together.
If you don't wont to write a plugin, or host plugins then CoreAudio might not actually be for you. But one of the best things about using CoreAudio is that once you get your sinewave callback working it is easy to add effects, or mix multiple sines together
To do this you need to put your output unit in a graph, to which you can effects, mixers, etc.
Here is some help on setting up graphs http://timbolstad.com/2010/03/16/core-audio-getting-started-pt2/
It isn't as difficult as it looks. Apple provides C++ helper classes for many things (/Developer/Examples/CoreAudio/PublicUtility) and even if you don't want to use C++ (you don't have to!) they can be a useful guide to the CoreAudio API.

If you are not doing this realtime, using the sin() function from math.h is not a bad idea. Just fill however many samples you need with sin() beforehand when it is time to play it, just send it to the audio buffer. sin() can be quite slow to call once every sample if you are doing this realtime, using an interpolated wavetable lookup method is much faster, but the resulting sound will not be as spectrally pure.

There is a good and well documented sine wave player code example in Chapter 7 of the Adamson/Avila "Learning Core Audio" book, published by Addison-Wesley Professional (ISBN-10: 0-321-63684-8 ):
http://www.informit.com/store/learning-core-audio-a-hands-on-guide-to-audio-programming-9780321636843
It is a rather new publication (2012) and addresses precisely the issue of this question. It's only a starting point, but it's a valuable starting point.
BTW. Don't jump to graphs before having this basic lesson (which involves some math) behind.
Concerning example code, a quick and efficient method I often use deals with a pre-filled sinewave lookup table which has as many members as sample rate, for 44100 Hz the table has size of 44100. In other words, cycle length equals sample rate. This gives an acceptable trade-off between speed and quality in many cases. You can initialize it with the program.
If you generate floating point samples (which is default in OSX), and use math functions, use sinf() rather than (float)sin(). Promotions in inner loop cycles of a render callback are always resource-expensive. So are repetitive multiplications of constants, such as 2.0*M_PI, which can too often be found in code examples.

Related

Insert skeleton in 3D model programmatically

Background
I'm working on a project where a user gets scanned by a Kinect (v2). The result will be a generated 3D model which is suitable for use in games.
The scanning aspect is going quite well, and I've generated some good user models.
Example:
Note: This is just an early test model. It still needs to be cleaned up, and the stance needs to change to properly read skeletal data.
Problem
The problem I'm currently facing is that I'm unsure how to place skeletal data inside the generated 3D model. I can't seem to find a program that will let me insert the skeleton in the 3D model programmatically. I'd like to do this either via a program that I can control programmatically, or adjust the 3D model file in such a way that skeletal data gets included within the file.
What have I tried
I've been looking around for similar questions on Google and StackOverflow, but they usually refer to either motion capture or skeletal animation. I know Maya has the option to insert skeletons in 3D models, but as far as I could find that is always done by hand. Maybe there is a more technical term for the problem I'm trying to solve, but I don't know it.
I do have a train of thought on how to achieve the skeleton insertion. I imagine it to go like this:
Scan the user and generate a 3D model with Kinect;
1.2. Clean user model, getting rid of any deformations or unnecessary information. Close holes that are left in the clean up process.
Scan user skeletal data using the Kinect.
2.2. Extract the skeleton data.
2.3. Get joint locations and store as xyz-coordinates for 3D space. Store bone length and directions.
Read 3D skeleton data in a program that can create skeletons.
Save the new model with inserted skeleton.
Question
Can anyone recommend (I know, this is perhaps "opinion based") a program to read the skeletal data and insert it in to a 3D model? Is it possible to utilize Maya for this purpose?
Thanks in advance.
Note: I opted to post the question here and not on Graphics Design Stack Exchange (or other Stack Exchange sites) because I feel it's more coding related, and perhaps more useful for people who will search here in the future. Apologies if it's posted on the wrong site.
A tricky part of your question is what you mean by "inserting the skeleton". Typically bone data is very separate from your geometry, and stored in different places in your scene graph (with the bone data being hierarchical in nature).
There are file formats you can export to where you might establish some association between your geometry and skeleton, but that's very format-specific as to how you associate the two together (ex: FBX vs. Collada).
Probably the closest thing to "inserting" or, more appropriately, "attaching" a skeleton to a mesh is skinning. There you compute weight assignments, basically determining how much each bone influences a given vertex in your mesh.
This is a tough part to get right (both programmatically and artistically), and depending on your quality needs, is often a semi-automatic solution at best for the highest quality needs (commercial games, films, etc.) with artists laboring over tweaking the resulting weight assignments and/or skeleton.
There are algorithms that get pretty sophisticated in determining these weight assignments ranging from simple heuristics like just assigning weights based on nearest line distance (very crude, and will often fall apart near tricky areas like the pelvis or shoulder) or ones that actually consider the mesh as a solid volume (using voxels or tetrahedral representations) to try to assign weights. Example: http://blog.wolfire.com/2009/11/volumetric-heat-diffusion-skinning/
However, you might be able to get decent results using an algorithm like delta mush which allows you to get a bit sloppy with weight assignments but still get reasonably smooth deformations.
Now if you want to do this externally, pretty much any 3D animation software will do, including free ones like Blender. However, skinning and character animation in general is something that tends to take quite a bit of artistic skill and a lot of patience, so it's worth noting that it's not quite as easy as it might seem to make characters leap and dance and crouch and run and still look good even when you have a skeleton in advance. That weight association from skeleton to geometry is the toughest part. It's often the result of many hours of artists laboring over the deformations to get them to look right in a wide range of poses.

FFT Pitch Detection for iOS using Accelerate Framework?

I have been reading up on FFT and Pitch Detection for a while now, but I'm having trouble piecing it all together.
I have worked out that the Accelerate framework is probably the best way to go with this, and I have read the example code from apple to see how to use it for FFTs. What is the input data for the FFT if I wanted to be running the pitch detection in real time? Do I just pass in the audio stream from the microphone? How would I do this?
Also, after I get the FFT output, how can I get the frequency from that? I have been reading everywhere, and can't find any examples or explanations of this?
Thanks for any help.
Frequency and pitch are not the same thing - frequency is a physical quantity, pitch is a psychological percept - they are similar, but there are important differences, which may or may not matter to you, depending on the type of instrument for which you are trying to measure pitch.
You need to read up a little on the various pitch detection algorithms (and on the meaning of pitch itself), decide what algorithm you want to use and only then set about implementing it. See this Wikipedia page for a good overview of pitch and pitch detection (note that you can use FFT for the autocorrelation-based and frequency domain methods).
As for using the FFT to identify peaks in a spectrum and their associated frequencies, there are many questions and answers related to this on SO already, see for example: How do I obtain the frequencies of each value in an FFT?
I have an example implementation of an Autocorrelation function available online for ios 5.1. Look at this post for a link to the implementation AND functions on how to find the nearest note and how to create a string representing the pitch (A, A#, B, B#, etc...)
While the FFT is very useful in many applications, it might not be the most accurate if you're trying to do simple pitch detection. (It can be as accurate, but you have to deal with complex numbers to do a lot of phase calculations)

API to break voice into phonemes / synthesize new speech given speech samples?

You know those movies where the tech geeks record someone's voice, and their software breaks it into phonemes? Which they can then use to type in any phrase, and make it seem as if the target is saying it?
Does that software exist in an API Version? I don't even know what to Google.
There is no such software. Breaking arbitrary speech into its constituent phonemes is only a partially solved problem: speech-to-text software is still imperfect, as is text-to-speech.
The idea is to reproduce the timbre of the target's voice. Even if you were able to segment the audio perfectly, reordering the phonemes would produce audio with unnatural cadence and intonation, not to mention splicing artifacts. At that point you're getting into smoothing, time-scaling, and pitch correction, all of which are possible and well-understood in theory, but operate poorly on real-world data, especially when the audio sample in question is as short as a single phoneme, and further when the timbre needs to be preserved.
These problems are compounded on the phonetic side by allophonic variation in sounds based on accent and surrounding phonemes; in order to faithfully produce even a low-quality approximation of the audio, you'd need a detailed understanding of the target's language, accent, and speech patterns.
Furthermore, your ultimate problem is one of social engineering, and people are not easy to fool when it comes to the voices of people they know. Even with a large corpus of input data, at best you could get a short low-quality sample, hardly enough for a conversation.
So while it's certainly possible, it's difficult; even if it existed, it wouldn't always be good enough.
SRI International (the company that created Siri for iOS) has an SDK called EduSpeak, which will take audio input and break it down into individual phonemes. I know this because I sat through a demo of the product about a week ago. During the demo, the presenter showed us an application that was created using the SDK. The application gave a few lines of text for the presenter to read. After reading the text, the application displayed a bar chart where each bar represented a phoneme from his speech. The height of each bar represented a score of how well each phoneme was pronounced (the presenter was not a native English speaker, so he received lower scores on certain phonemes compared to others). The presenter could also click on each individual bar to have only that individual phoneme played back using the original audio.
So yes, software exists that divides audio up by phoneme, and it does a very good job of it. Now, whether or not those phonemes can be re-assembled into speech is an open question. If we end up getting a trial version of the SDK, I'll try it out and let you know.
If your aim is to mimic someone else's voice, then another attitude is to convert your own voice (instead of assembling phonemes). It is (surprisingly) called voice conversion, e.g http://www.busim.ee.boun.edu.tr/~speech/projects/Voice_Conversion.htm
The technology is called "voice synthesis" and "voice recognition"
The java API for this can be found here Java voice JSAPI
Apple has an API for this Apple speech
Microsoft has several ...one is discussed here Vista speech
Lyrebird is a start-up that is working on this very problem. Given samples of a person's voice and some written text, it can synthesize a spoken version of that written text in the voice of the person in the samples.
You can get interesting voice warping effects with a formant-aware pitch shift. Adobe Audition has a pretty good implementation. Antares produces some interesting vocal effects VST plugins.
These techniques use some form of linear predictive coding (LPC) to treat the voice as a source-filter model. LPC works on speech signals by estimating the resonance of the vocal tract (formant), reversing its effect with an inverse filter, and then coding the resulting residual signal. The residual signal is ideally an impulse train that represents the glottal impulse. This allows the scaling of pitch and formants independently, which leads to a much better gender conversion result than simple pitch shifting.
I dunno about a commercially available solution, but the concept isn't entirely out of the range of possibility. For example, the University of Delaware has fairly decent software for doing just that.
http://www.modeltalker.com

How to make a 2D Soft-body physics engine?

The definition of rigid body in Box2d is
A chunk of matter that is so strong
that the distance between any two bits
of matter on the chunk is completely
constant.
And this is exactly what i don't want as i would like to make 2D (maybe 3D eventually), elastic, deformable, breakable, and even sticky bodies.
What I'm hoping to get out of this community are resources that teach me the math behind how objects bend, break and interact. I don't care about the molecular or chemical properties of these objects, and often this is all I find when I try to search for how to calculate what a piece of wood, metal, rubber, goo, liquid, organic material, etc. might look like after a force is applied to it.
Also, I'm a very visual person, so diagrams and such are EXTREMELY HELPFUL for me.
================================================================================
Ignore these questions, they're old, and I'm only keeping them here for contextual purposes
1.Are there any simple 2D soft-body physics engines out there like this?
preferably free or opensource?
2.If not would it be possible to make my own without spending years on it?
3.Could i use existing engines like bullet and box2d as a start and simply transform their code, or would this just lead to more problems later, considering my 1 year of programming experience and bullet being 3D?
4.Finally, if i were to transform another library, would it be the best change box2D's already 2d code, Bullet's already soft code, or mixing both's source code?
Thanks!
(1) Both Bullet and PhysX have support for deformable objects in some capacity. Bullet is open source and PhysX is free to use. They both have ports for windows, mac, linux and all the major consoles.
(2) You could hack something together if you really know what you are doing, and it might even work. However, there will probably be bugs unless you have a damn good understanding of how Box2D's sequential impulse constraint solver works and what types of measures are going to be necessary to keep your system stable. That said, there are many ways to get deformable objects working with minimal fuss within a game-like environment. The first option is to take a second (or higher) order approximation of the deformation. This lets you deal with deformations in much the same way as you deal with rigid motions, only now you have a few extra degrees of freedom. See for example the following paper:
http://www.matthiasmueller.info/publications/MeshlessDeformations_SIG05.pdf
A second method is pressure soft bodies, which basically model the body as a set of particles with some distance constraints and pressure forces. This is what both PhysX and Bullet do, and it is a pretty standard technique by now (for example, Gish used it):
http://citeseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.4.2828%26rep%3Drep1%26type%3Dpdf
If you google around, you can find lots of tutorials on implementing it, but I can't vouch for their quality. Finally, there has been a more recent push to trying to do deformable objects the `right' way using realistic elastic models and finite element type approaches. This is still an area of active research, so it is not for the faint of heart. For example, you could look at any number of the papers in this year's SIGGRAPH proceedings:
http://kesen.realtimerendering.com/sig2011.html
(3) Probably not. Though there are certain 2D style games that can work with a 3D physics engine (for example top down type games) for special effects.
(4) Based on what I just said, you should probably know the answer by now. If you are the adventurous sort and got some time to kill and the will to learn, then I say go for it! Of course it will be hard at first, but like anything it gets easier over time. Plus, learning new stuff is lots of fun!
On the other hand, if you just want results now, then don't do it. It will take a lot of time, and you will probably fail (a lot). If you just want to make games, then stick to the existing libraries and build on whatever abstractions it provides you.
Quick and partial answer:
rigid body are easy to model due to their property (you can use physic tools, like "Torseur+ (link on french on wikipedia, english equivalent points to screw theory) to modelate forces applying at any point in your element.
in comparison, non-solid elements move from almost solid (think very hard rubber : it can move but is almost solid) to almost liquid (think very soft ruber, latex). Meaning that dynamical properties applying to that knd of objects are much complex and depend of the nature of the object
Take the example of a spring : it's easy to model independantly (f=k.x), but creating a generic tool able to model that specific case is a nightmare (especially if you think of corner cases : extension is not infinite, compression reaches a lower point, material is non linear...)
as far as I know, when dealing with "elastic" materials, people do their own modelisation for their own purpose (a generic one does not exist)
now the answers:
Probably not, not that I know at least
not easily, see previously why
Unless you got high level background in elastic materials, I fear it's gonna be painful
Hope this helped
Some specific cases such as deformable balls can be simulated pretty well using spring-joint bodies:
Here is an implementation example with cocos2d: http://2sa-studio.blogspot.com/2014/05/soft-bodies-with-cocos2d-v3.html
Depending on the complexity of the deformable objects that you need, you might be able to emulate them using box2d, constraining rigid bodies with joints or springs. I did it in the past using a box2d clone for xna (farseer) and it worked nicely. Hope this helps.
The physics of your question breaks down into two different topics:
Inelastic Collisions: The math here is easy, and you could write a pretty decent library yourself without too much work for 2D points/balls. (And with more work, you could learn the physics for extended bodies.)
Materials Bending and Breaking: This will be hard. In general, you will have to model many of the topics in Mechanical Engineering:
Continuum Mechanics
Structural Analysis
Failure Analysis
Stress Analysis
Strain Analysis
I am not being glib. Modeling the bending and breaking of materials is, in general, a very detailed and varied topic. It will take a long time. And the only way to succeed will be to understand the science well enough that you can make clever shortcuts in limiting the scope of the science you need to model in your game.
However, the other half of your problem (modeling Inelastic Collisions) is a much more achievable goal.
Good luck!

Getting Pitch with VB.net

I want to get the pitch of a song at any point. I plan on storing the pitches later. How can I read say... an mp3 file or wav file to get the pitch played at a certain point?
Here is a visual example:
Say I wanted to get the pitch that is here at ^this point of the song.
Thanks if you can!
The matter is a tad more complicated than you may be anticipating.
While time-domain approaches exist (that is, approaches which work with the PCM data directly), frequency-domain pitch detection is going to be more accurate. You can read a very simplified overview here.
What you probably want is a Fourier Transform, which can be used to transform blocks of your signal from time-domain to frequency-domain (that is, a distribution of frequency content over a given span of the signal). From there, you would need to analyze the frequency spectrum within that block. The problem becomes even harder still, because there is no best way to deduce pitch from a sampled frequency spectrum in the general case. The aforementioned Wikipedia article should give you a foundation for looking into those algorithms.
Finally, it's worth noting that this is really a language-agnostic question, unless your primary interest is in reading a WAV file specifically using VB.NET.