Detect Collision point between a mesh and a sphere? - physics

I am writing a physics simulation using Ogre and MOC.
I have a sphere that I shoot from the camera's position and it travels in the direction the camera is facing by using the camera's forward vector.
I would like to know how I can detect the point of collision between my sphere and another mesh.
How would I be able to check for a collision point between the two meshes using MOC or OGRE?
Update: Should have mentioned this earlier. I am unable to use a 3rd party physics library as we I need to develop this myself (uni project).

The accepted solution here flat out doesn't work. It will only even sort of work if the mesh density is generally high enough that no two points on the mesh are farther apart than the diameter of your collision sphere. Imagine a tiny sphere launched at short range on a random vector at a huuuge cube mesh. The cube mesh only has 8 verts. What are the odds that the cube is actually going to hit one of those 8 verts?
This really needs to be done with per-polygon collision. You need to be able to check intersection of polygon and a sphere (and additionally a cylinder if you want to avoid tunneling like reinier mentioned). There are quite a few resources for this online and in book form, but http://www.realtimerendering.com/intersections.html might be a useful starting point.
The comments about optimization are good. Early out opportunities (perhaps a quick check against a bounding sphere or an axis aligned bounding volume for the mesh) are essential. Even once you've determined that you're inside a bounding volume, it would probably be a good idea to be able to weed out unlikely polygons (too far away, facing the wrong direction, etc.) from the list of potential candidates.

I think the best would be to use a specialized physics library.
That said. If I think about this problem, I would suspect that it's not that hard:
The sphere has a midpoint and a radius. For every point in the mesh do the following:
check if the point lies inside the sphere.
if it does check if it is closer to the center than the previously found point(if any)
if it does... store this point as the collision point
Of course, this routine will be fairly slow.
A few things to speed it up:
for a first trivial reject, first see if the bounding sphere of the mesh collides
don't calc the squareroots when checking distances... use the squared lengths instead.(much faster)
Instead of comparing every point of the mesh, use a dimensional space division algorithm (quadtree / BSP)for the mesh to quickly rule out groups of points
Ah... and this routine only works if the sphere doesn't travel too fast (relative to the mesh). If it would travel very fast, and you sample it X times per second, chances are the sphere would have flown right through the mesh without every colliding. To overcome this, you must use 'swept volumes' which basically makes your sphere into a tube. Making the math exponentially complicated.

Related

How to apply depth test to diffuse lighting?

I've been fiddling my way through vulkan, and have tried out some basic diffuse lighting, which only takes into account the surface normals. On the side of the model facing the light, things look fine -
On the opposite side of the model though, there's a part of the model which is shaded like it is illuminated even though it shouldn't be-
I know this happens because I'm only considering the surface normals and the shader doesn't care where the vertex is as long as its normal is towards the light, but how do I fix it? I feel like I need a way to do a depth test to figure out whether a part of the model should be lighted or not. How would I go about doing this if that is the case? What should I be doing if otherwise?
Sounds like you want to implement shadows.
A standard way is shadow mapping. You render the scene from the point of the light and only keep the depth buffer. You then pass that depth buffer as a texture to the fragment shader and sample that based on where the point is in the world and compare the sampled depth with the distance to the light.
However there are various caveats with this technique. Most common ones being shadow acne where quantization error leads to fragments self shadowing resulting in speckled lighting, you can fix that by adding a small offset to the depth. The next one is peter panning, where that offset you added previously leads to light bleedthrough where a thin wall meets a floor, you fix that by not having walls thin enough that the offset goes through them.

Tetrahedralization from surface mesh of thin-walled object

I need to generate a tetrahedral (volume) mesh of thin-walled object object. Think of objects like a bottle or a plastic bowl, etc, which are mostly hollow. The volumetric mesh is needed for an FEM simulation. A surface mesh of the outside surface of the object is available from measurement, using e.g. octomap or KinectFusion. Therefore the vertex spacing is relatively regular. The inner surface of the object can be calculated from the outside surface by moving all points inside, since the wall thickness is known.
So far, I have considered the following approaches:
Create a 3D Delaunay triangulation (which would destroy the existing surface meshes) and then remove all tetrahedra which are not between the two original surfaces. For this check, it might be required to create an implicit surface representation of the 2 surfaces.
Create a 3D Delaunay triangulation and remove tetrahedra which are "inside" (in the hollow space) or "outside" (of the outer surface) with Alphashapes.
Close the outside and inside meshes and load them into tetgen as the outside hull and as a hole respectively.
These approaches seem to be a bit inelegant to me, and they still have some pitfalls. I would probably need several libraries/tools for them. For 1 and 2, probably tetgen or another FEM meshing tool would still be required to create well-conditioned tetrahedra. Does anyone have a more straight-forward solution? I guess this should also be a common problem in 3D printing.
Concerning tools/libraries, I have looked into PCL, meshlab and tetgen so far. They all seem to do only part of the job. Ideally, I would like to use only open source libraries and avoid tools which require manual intervention.
One way is to:
create triangular mesh of surface points,
extrude (move) that surface to inner for a given thickness. That produces volume (triangular prism) mesh of a wall,
each prism can be split in three tetrahedrons.
The problem I see is aspect ratio.
A single layer of tetrahedra will not reproduce shell or bending behavior very well. A single element through the thickness will already require a large mesh. Putting more than one will likely break the bank in order to keep aspect ratios and angles acceptable.
I'd prefer brick or thick shell elements to tetrahedra in this case. I think the modeling will be easier and the behavior will be more faithful to the physics.

Continuous modification of a set of points - find all nearest neighbors

I have a 3D set of points. These points will undergo a series of tiny perturbations (all points will be perturbed at once). Example: if I have 100 points in a box, each point may be moved up to, but no more than 0.2% of the box width in each iteration of my program.
After each perturbation operation, I want to know the new distance to each point's nearest neighbor.
This needs to use a very fast data structure; I'm optimizing this for speed. It's a somewhat tricky problem because I'm modifying all points at once. Approximate NN algorithms are not suitable for this problem.
I feel like the answer is somewhere between kd-trees and Voronoi tessellations, but I am not an expert on data structures, so I am baffled about what to do. I sure this is a very hard problem that would require a lot of research to reach a truly optimal solution, but even something fairly optimal will work for me.
Thanks
You can try a quadkey or monster curve. It reduce the dimension and fills the plane. Microsoft bing maps quadkey is a good start to learn.

Tweaking Heightmap Generation For Hexagon Grids

Currently I'm working on a little project just for a bit of fun. It is a C++, WinAPI application using OpenGL.
I hope it will turn into a RTS Game played on a hexagon grid and when I get the basic game engine done, I have plans to expand it further.
At the moment my application consists of a VBO that holds vertex and heightmap information. The heightmap is generated using a midpoint displacement algorithm (diamond-square).
In order to implement a hexagon grid I went with the idea explained here. It shifts down odd rows of a normal grid to allow relatively easy rendering of hexagons without too many further complications (I hope).
After a few days it is beginning to come together and I've added mouse picking, which is implemented by rendering each hex in the grid in a unique colour, and then sampling a given mouse position within this FBO to identify the ID of the selected cell (visible in the top right of the screenshot below).
In the next stage of my project I would like to look at generating more 'playable' terrains. To me this means that the shape of each hexagon should be more regular than those seen in the image above.
So finally coming to my point, is there:
A way of smoothing or adjusting the vertices in my current method
that would bring all point of a hexagon onto one plane (coplanar).
EDIT:
For anyone looking for information on how to make points coplanar here is a great explination.
A better approach to procedural terrain generation that would allow
for better control of this sort of thing.
A way to represent my vertex information in a different way that allows for this.
To be clear, I am not trying to achieve a flat hex grid with raised edges or platforms (as seen below).
)
I would like all the geometry to join and lead into the next bit.
I'm hope to achieve something similar to what I have now (relatively nice undulating hills & terrain) but with more controllable plateaus. This gives me the flexibility of cording off areas (unplayable tiles) later on, where I can add higher detail meshes if needed.
Any feedback is welcome, I'm using this as a learning exercise so please - all comments welcome!
It depends on what you actually want and what you mean by "more controlled".
Do you want to be able to say "there will be a mountain on coordinates [11, -127] with radius 20"? Complexity of this this depends on how far you want to go. If you want just mountains, then radial gradients are enough (just add the gradient values to the noise values). But if you want some more complex shapes, you are in for a treat.
I explore this idea to great depth in my project (please consider that the published version is just a prototype, which is currently undergoing major redesign, it is completely usable a map generator though).
Another way is to make the generation much more procedural - you just specify a sequence of mathematical functions, which you apply on the terrain. Even a simple value transformation can get you very far.
All of these methods should work just fine for hex grid. If artefacts occur because of the odd-row shift, then you could interpolate the odd rows instead (just calculate the height value for the vertex from the two vertices between which it is located with simple linear interpolation formula).
Consider a function, which maps the purple line into the blue curve - it emphasizes lower located heights as well as very high located heights, but makes the transition between them steeper (this example is just a cosine function, making the curve less smooth would make the transformation more prominent).
You could also only use bottom half of the curve, making peaks sharper and lower located areas flatter (thus more playable).
"sharpness" of the curve can be easily modulated with power (making the effect much more dramatic) or square root (decreasing the effect).
Implementation of this is actually extremely simple (especially if you use the cosine function) - just apply the function on each pixel in the map. If the function isn't so mathematically trivial, lookup tables work just fine (with cubic interpolation between the table values, linear interpolation creates artefacts).
Several more simple methods of "gamification" of random noise terrain can be found in this paper: "Realtime Synthesis of Eroded Fractal Terrain for Use in Computer Games".
Good luck with your project

How is ray coherence used to improve raytracing speed while still looking realistic?

I'm considering exploiting ray coherence in my software per-pixel realtime raycaster.
AFAICT, using a uniform grid, if I assign ray coherence to patches of say 4x4 pixels (where at present I have one raycast per pixel), given 16 parallel rays with different start (and end) point, how does this work out to a coherent scene? What I foresee is:
There is a distance within which the ray march would be exactly the same for adjacent/similar rays. Within that distance, I am saving on processing. (How do I know what that distance is?)
I will end up with a slightly to seriously incorrect image, due to the fact that some rays didn't diverge at the right times.
Given that my rays are cast from a single point rather than a plane, I guess I will need some sort of splitting function according to distance traversed, such that the set of all rays forms a tree as it move outward. My concern here is that finer detail will be lost when closer to the viewer.
I guess I'm just not grasping how this is meant to be used.
If done correctly, ray coherence shouldn't affect the final image. Because the rays are very close together, there's a good change that they'll all take similar paths when traversing the acceleration structure (kd-tree, aabb tree, etc). You have to go down each branch that any of the rays could hit, but hopefully this doesn't increase the number of branches much, and it saves on memory access.
The other advantage is that you can use SIMD (e.g. SSE) to accelerate some of your tests, both in the acceleration structure and against the triangles.