Continuous modification of a set of points - find all nearest neighbors - optimization

I have a 3D set of points. These points will undergo a series of tiny perturbations (all points will be perturbed at once). Example: if I have 100 points in a box, each point may be moved up to, but no more than 0.2% of the box width in each iteration of my program.
After each perturbation operation, I want to know the new distance to each point's nearest neighbor.
This needs to use a very fast data structure; I'm optimizing this for speed. It's a somewhat tricky problem because I'm modifying all points at once. Approximate NN algorithms are not suitable for this problem.
I feel like the answer is somewhere between kd-trees and Voronoi tessellations, but I am not an expert on data structures, so I am baffled about what to do. I sure this is a very hard problem that would require a lot of research to reach a truly optimal solution, but even something fairly optimal will work for me.
Thanks

You can try a quadkey or monster curve. It reduce the dimension and fills the plane. Microsoft bing maps quadkey is a good start to learn.

Related

Information about CGAL and alternatives

I'm working on a problem that will eventually run in an embedded microcontroller (ESP8266). I need to perform some fairly simple operations on linear equations. I don't need much, but do need to be able work with points and linear equations to:
Define an equations for lines either from two known points, or one
point and a gradient
Calculate a new x,y point on an equation line that is a specific distance from another point on that equation line
Drop a perpendicular onto an equation line from a point
Perform variations of cosine-rule calculations on points and triangle sides defined as equations
I've roughed up some code for this a while ago based on high school "y = mx + c" concepts, but it's flawed (it fails with infinities when lines are vertical), and currently in Scala. Since I suspect I'm reinventing a wheel that's not my primary goal, I'd like to use someone else's work for this!
I've come across CGAL, and it seems very likely it's capable of all this and more, but I have two questions about it (given that it seems to take ages to get enough understanding of this kind of huge library to actually be able to answer simple questions!)
It seems to assert some kind of mathematical perfection in it's calculations, but that's not important to me, and my system will be severely memory constrained. Does it use/offer memory efficient approximations?
Is it possible (and hopefully easy) to separate out just a limited subset of features, or am I going to find the entire library (or even a very large subset) heading into my memory limited machine?
And, I suppose the inevitable follow up: are there more suitable libraries I'm unaware of?
TIA!
The problems that you are mentioning sound fairly simple indeed, so I'm wondering if you really need any library at all. Maybe if you post your original code we could help you fix it--your problem sounds like you need to redo a calculation avoiding a division by zero.
As for your point (2) about separating a limited number of features from CGAL, giving the size and the coding style of that project, from my experience that will be significantly more complicated (if at all possible) than fixing your own code.
In case you want to try a simpler library than CGAL, maybe you could try Boost.Geometry
Regards,

transform a path along an arc

Im trying to transform a path along an arc.
My project is running on osX 10.8.2 and the painting is done via CoreAnimation in CALayers.
There is a waveform in my project which will be painted by a path. There are about 200 sample points which are mirrored to the bottom side. These are painted 60 times per second and updated to a song postion.
Please ignore the white line, it is just a rotation indicator.
What i am trying to achieve is drawing a waveform along an arc. "Up" should point to the middle. It does not need to go all the way around. The waveform should be painted along the green circle. Please take a look at the sketch provided below.
Im not sure how to achieve this in a performant manner. There are many points per second that need coordinate correction.
I tried coming up with some ideas of my own:
1) There is the possibility to add linear transformations to paths, which, i think, will not help me here. The only thing i can think of is adding a point, rotating the path with a transformation, adding another point, rotating and so on. But this would be very slow i think
2) Drawing the path into an image and bending it would surely lead to image-artifacts.
3) Maybe the best idea would be to precompute sample points on an arc, then save save a vector to the center. Taking the y-coordinates of the waveform, placing them on the sample points and moving them along the vector to the center.
But maybe i am just not seeing some kind of easy solution to this problem. Help is really appreciated and fresh ideas very welcome. Thank you in advance!
IMHO, the most efficient way to go (in terms of CPU usage) would be to use some form of pre-computed approach that would take into account the resolution of the display.
Cleverly precomputed values
I would go for the mathematical transformation (from linear to polar) and combine two facts:
There is no need to perform expansive mathematical computation
There is no need to render two points that are too close from each other
I have no ready-made algorithm for you, but you could use a pre-computed sin or cos table, and match the data range to the display size in order to work with integers.
For instance imagine we have some data ranging from 0 to 1E6 and we need to display the sin value of each point in a 100 pix height rectangle. We can use a pre-computed sin table and work with integers. This way displaying the sin value of a point would be much quicker. This concept can be refined to get a nicer result.
Also, there are some ways to retain only significant points of a curve so that the displayed curve actually looks like the original (see the Ramer–Douglas–Peucker algorithm on wikipedia). But I found it to be inefficient for quickly displaying ever-changing data.
Using multicore rendering
You could compute different areas of the curve using multiple cores (can be tricky)
Or you could use pre-computing using several cores, and one core to do finish the job.

How is ray coherence used to improve raytracing speed while still looking realistic?

I'm considering exploiting ray coherence in my software per-pixel realtime raycaster.
AFAICT, using a uniform grid, if I assign ray coherence to patches of say 4x4 pixels (where at present I have one raycast per pixel), given 16 parallel rays with different start (and end) point, how does this work out to a coherent scene? What I foresee is:
There is a distance within which the ray march would be exactly the same for adjacent/similar rays. Within that distance, I am saving on processing. (How do I know what that distance is?)
I will end up with a slightly to seriously incorrect image, due to the fact that some rays didn't diverge at the right times.
Given that my rays are cast from a single point rather than a plane, I guess I will need some sort of splitting function according to distance traversed, such that the set of all rays forms a tree as it move outward. My concern here is that finer detail will be lost when closer to the viewer.
I guess I'm just not grasping how this is meant to be used.
If done correctly, ray coherence shouldn't affect the final image. Because the rays are very close together, there's a good change that they'll all take similar paths when traversing the acceleration structure (kd-tree, aabb tree, etc). You have to go down each branch that any of the rays could hit, but hopefully this doesn't increase the number of branches much, and it saves on memory access.
The other advantage is that you can use SIMD (e.g. SSE) to accelerate some of your tests, both in the acceleration structure and against the triangles.

Elegant representations of graphs in R^3

If I have a graph of a reasonable size (e.g. ~100 nodes, ~40 edges coming out of each node) and I want to represent it in R^3 (i.e. map each node to a point in R^3 and draw a straight line between any two nodes which are connected in the original graph) in a way which would make it easy to understand its structure, what do you think would make a good drawing criterion?
I know this question is ill-posed; it's not objective. The idea behind it is easier to understand with an extreme case. Suppose you have a connected graph in which each node connects to two and only two other nodes, except for two nodes which only connect to one other node. It's not difficult to see that this graph, when drawn in R^3, can be drawn as a straight line (with nodes sprinkled over the line). Nevertheless, it is possible to draw it in a way which makes it almost impossible to see its very simple structure, e.g. by "twisting" it as much as possible around some fixed point in R^3. So, for this simple case, it's clear that a simple 3D representation is that of a straight line. However, it is not clear what this simplicity property is in the general case.
So, the question is: how would you define this simplicity property?
I'm happy with any kind of answer, be it a definition of "simplicity" computable for graphs, or a greedy approximated algorithm which transforms graphs and that converges to "simpler" 3D representations.
Thanks!
EDITED
In the mean time I've put force-based graph drawing ideas suggested in the answer into practice and wrote an OCaml/openGL program to simulate how imposing an electrical repulsive force between nodes (Coulomb's Law) and a spring-like behaviour on edges (Hooke's law) would turn out. I've posted the video on youtube. The video starts with an initial graph of 100 nodes each with approximately 1-2 outgoing edges and places the nodes randomly in 3D space. Then all the forces I mentioned are put into place and the system is left to move around subject to those forces. In the beginning, the graph is a mess and it's very difficult to see the structure. Closer to the end, it is clear that the graph is almost linear. I've also experience with larger-sized graphs but sometimes the geometry of the graph is just a mess and no matter how you plot it, you won't be able to visualise anything. And here is an even more extreme example with 500 nodes.
One simple approach is described, e.g., at http://en.wikipedia.org/wiki/Force-based_algorithms_%28graph_drawing%29 . The underlying notion of "simplicity" is something like "minimal potential energy", which doesn't really correspond to simplicity in any useful sense but might be good enough in practice.
(If you have 100 nodes of degree 40, I have some doubt as to whether any way of drawing them is going to reveal much in the way of human-accessible structure. That's a lot of edges. Still, good luck!)

Detect Collision point between a mesh and a sphere?

I am writing a physics simulation using Ogre and MOC.
I have a sphere that I shoot from the camera's position and it travels in the direction the camera is facing by using the camera's forward vector.
I would like to know how I can detect the point of collision between my sphere and another mesh.
How would I be able to check for a collision point between the two meshes using MOC or OGRE?
Update: Should have mentioned this earlier. I am unable to use a 3rd party physics library as we I need to develop this myself (uni project).
The accepted solution here flat out doesn't work. It will only even sort of work if the mesh density is generally high enough that no two points on the mesh are farther apart than the diameter of your collision sphere. Imagine a tiny sphere launched at short range on a random vector at a huuuge cube mesh. The cube mesh only has 8 verts. What are the odds that the cube is actually going to hit one of those 8 verts?
This really needs to be done with per-polygon collision. You need to be able to check intersection of polygon and a sphere (and additionally a cylinder if you want to avoid tunneling like reinier mentioned). There are quite a few resources for this online and in book form, but http://www.realtimerendering.com/intersections.html might be a useful starting point.
The comments about optimization are good. Early out opportunities (perhaps a quick check against a bounding sphere or an axis aligned bounding volume for the mesh) are essential. Even once you've determined that you're inside a bounding volume, it would probably be a good idea to be able to weed out unlikely polygons (too far away, facing the wrong direction, etc.) from the list of potential candidates.
I think the best would be to use a specialized physics library.
That said. If I think about this problem, I would suspect that it's not that hard:
The sphere has a midpoint and a radius. For every point in the mesh do the following:
check if the point lies inside the sphere.
if it does check if it is closer to the center than the previously found point(if any)
if it does... store this point as the collision point
Of course, this routine will be fairly slow.
A few things to speed it up:
for a first trivial reject, first see if the bounding sphere of the mesh collides
don't calc the squareroots when checking distances... use the squared lengths instead.(much faster)
Instead of comparing every point of the mesh, use a dimensional space division algorithm (quadtree / BSP)for the mesh to quickly rule out groups of points
Ah... and this routine only works if the sphere doesn't travel too fast (relative to the mesh). If it would travel very fast, and you sample it X times per second, chances are the sphere would have flown right through the mesh without every colliding. To overcome this, you must use 'swept volumes' which basically makes your sphere into a tube. Making the math exponentially complicated.