Web users searching for too much data - sql

We currently have a search on our website that allows users to enter a date range. The page calls a stored procedure that queries for the date range and returns the appropriate data. However, a lot of our tables contain 30m to 60m rows. If a user entered a date range of a year (or some large range), the database would grind to a halt.
Is there any solution that doesn't involve putting a time constraint on the search? Paging is already implemented to show only the first 500 rows, but the database is still getting hit hard. We can't put a hard limit on the number of results returned because the user "may" need all of them.

If the user inputed date range is to large, have your application do the search in small date range steps. Possibly using a slow start approach: first search is limited to, say one month range and if it bings back less than the 500 rows, search the two preceding months until you have 500 rows.
You will want to start with most recent dates for descending order and with oldest dates for ascending order.

It sounds to me like this is a design and not a technical problem. No one ever needs millions of records of data on the fly.
You're going to have to ask yourself some hard questions: Is there another way of getting people their data than the web? Is there a better way you can ask for filtering? What exactly is it that the users need this information for and is there a way you can provide that level of reporting instead of spewing everything?
Reevaluate what it is that the users want and need.

We can't put a hard limit on the
number of results returned because the
user "may" need all of them.
You seem to be saying that you can't prevent the user from requesting large datasets for business reasons. I can't see any techical way around that.

Index your date field and force a query to use that index:
CREATE INDEX ix_mytable_mydate ON mytable (mydate)
SELECT TOP 100 *
FROM mytable WITH (INDEX ix_mytable_mydate)
WHERE mydate BETWEEN #start and #end
It seems that the optimizer chooses FULL TABLE SCAN when it sees the large range.
Could you please post the query you use and execution plan of that query?

Don't know which of these are possible
Use a search engine rather than a database?
Don't allow very general searches
Cache the results of popular searches
Break the database into shards on separate servers, combine the results on your application.
Do multiple queries with smaller date ranges internally

It sounds like you really aren't paging. I would have the stored procedure take a range (which you calculated) for the pages and then only get those rows for the current page. Assuming that the data doesn't change frequently, this would reduce the load on the database server.

How is your table data physically structured i.e. partitioned, split across Filegroups and disk storage etc. ?
Are you using table partitioning? If not you should look into using aligned partitioning. You could partition your data by date, say a partition for each year as an example.
Where I to request a query spanning three years, on a multiprocessor system, I could concurrently access all three partitions at once, thereby improving query performance.

How are you implementing the paging?
I remember I faced a problem like this a few years back and the issue was to do with how I implemented the paging. However the data that I was dealing with was not as big as yours.

Parallelize, and put it in ram (or a cloud). You'll find that once you want to access large amounts of data at the same time, rdbms become the problem instead of the solution. Nobody doing visualizations uses a rdbms.

Related

How to store millions of statistics records efficiently?

We have about 1.7 million products in our eshop, we want to keep record of how many views this products had for 1 year long period, we want to record the views every atleast 2 hours, the question is what structure to use for this task?
Right now we tried keeping stats for 30 days back in records that have 2 columns classified_id,stats where stats is like a stripped json with format date:views,date:views... for example a record would look like
345422,{051216:23212,051217:64233} where 051216,051217=mm/dd/yy and 23212,64233=number of views
This of course is kinda stupid if you want to go 1 year back since if you want to get the sum of views of say 1000 products you need to fetch like 30mb from the database and calculate it your self.
The other way we think of going right now is just to have a massive table with 3 columns classified_id,date,view and store its recording on its own row, this of course will result in a huge table with hundred of millions of rows , for example if we have 1.8 millions of classifieds and keep records 24/7 for one year every 2 hours we need
1800000*365*12=7.884.000.000(billions with a B) rows which while it is way inside the theoritical limit of postgres I imagine the queries on it(say for updating the views), even with the correct indices, will be taking some time.
Any suggestions? I can't even imagine how google analytics stores the stats...
This number is not as high as you think. In current work we store metrics data for websites and total amount of rows we have is much higher. And in previous job I worked with pg database which collected metrics from mobile network and it collected ~2 billions of records per day. So do not be afraid of billions in number of records.
You will definitely need to partition data - most probably by day. With this amount of data you can find indexes quite useless. Depends on planes you will see in EXPLAIN command output. For example that telco app did not use any indexes at all because they would just slow down whole engine.
Another question is how quick responses for queries you will need. And which steps in granularity (sums over hours/days/weeks etc) for queries you will allow for users. You may even need to make some aggregations for granularities like week or month or quarter.
Addition:
Those ~2billions of records per day in that telco app took ~290GB per day. And it meant inserts of ~23000 records per second using bulk inserts with COPY command. Every bulk was several thousands of records. Raw data were partitioned by minutes. To avoid disk waits db had 4 tablespaces on 4 different disks/ arrays and partitions were distributed over them. PostreSQL was able to handle it all without any problems. So you should think about proper HW configuration too.
Good idea also is to move pg_xlog directory to separate disk or array. No just different filesystem. It all must be separate HW. SSDs I can recommend only in arrays with proper error check. Lately we had problems with corrupted database on single SSD.
First, do not use the database for recording statistics. Or, at the very least, use a different database. The write overhead of the logs will degrade the responsiveness of your webapp. And your daily backups will take much longer because of big tables that do not need to be backed up so frequently.
The "do it yourself" solution of my choice would be to write asynchronously to log files and then process these files afterwards to construct the statistics in your analytics database. There is good code snippet of async write in this response. Or you can benchmark any of the many loggers available for Java.
Also note that there are products like Apache Kafka specifically designed to collect this kind of information.
Another possibility is to create a time series in column oriented database like HBase or Cassandra. In this case you'd have one row per product and as many columns as hits.
Last, if you are going to do it with the database, as #JosMac pointed, create partitions, avoid indexes as much as you can. Set fillfactor storage parameter to 100. You can also consider UNLOGGED tables. But read thoroughly PostgreSQL documentation before turning off the write-ahead log.
Just to raise another non-RDBMS option for you (so a little off topic), you could send text files (CSV, TSV, JSON, Parquet, ORC) to Amazon S3 and use AWS Athena to query it directly using SQL.
Since it will query free text files, you may be able to just send it unfiltered weblogs, and query them through JDBC.

How to speed up Access front-end / SQL Server back-end with large tables?

I'm re-designing a front-end for SQL Server in Access, to allow non-programmers in our company to query the database.
The problem is that some of the tables are very large. At the moment I'm using linked tables. One query that I'm trying to allow, accesses five tables including that large one. The table has millions of rows, as it has every transaction ever made in the company.
When I tried the query in Access it took minutes and would not finish, and Access just froze. So instead I decided to use a subquery to narrow down the large table before doing the joins. Every entry in the table has a date, so I made a subquery and filtered it to return only the current day just to test. In fact, because I was just testing, I even filtered it even further to only return the date column. This narrows it down to 80,000 entries or so. Eventually I did get results, but it took around three minutes, and that's just the subquery I'm testing. Once results DID return, Access would freeze every time I attempted to use the scroll bar.
Next I tried pass-through queries, thinking it'd be faster. It was faster, but still took around a minute and a half, and still had the freezing problems with the scroll bar. The issue is that this same query takes only 3 seconds on SQL server (the date query I mean.) I was hoping that I could get this query very fast and then use this for the join.
I could use views, but the problem is that I want the user to be able to specify the date range.
Is there anything I can do to speed up this performance or am I screwed?
It makes no sense to let the users scroll through 10th of thousands of records. They will be lost in the data flood. Instead, provide them means to analyze the data. First answer the question: "what kind of information do the users need? “ They might want to know how many transactions of a certain type have occurred during the day or within an hour. They might want to compare different days. Let the users group the data; this reduces the number of records that have to be transmitted and displayed. Show them counts, sums or averages. Let them filter the data or present them the grouped data in charts.

Improve performance of querys in Postgresql with an index

I have in PostgreSQL tables, each with millions of records and more that one hundred fields.
One of them is a date field, which we filter by this in our queries. The creation of an index for this date field improved the performance of the queries that read an small range of dates, but in big range of dates the performance decreased...
I must prioritize one over the other? The performance in small ranges can be improved without decreasing the big range queries?
Queries in PostgreSQL cannot be answered just using the information in an index. Whether or not the row is visible, from the perspective of the query that is executing, is stored in the main row itself. So when you add an index to something, and execute a query that uses it, there are two steps involved:
Navigate the index to determine which data blocks are used
Retrieve those blocks and return the rows that match the query
It is therefore possible that answering a query with an index can take longer than just going directly to the data blocks and fetching the rows. The most common case where this happens is if you are actually grabbing a large portion of the data. Typically if more than 20% of the table is used, it's considered fast to just sequentially access it. Sometimes the planner thinks less than 20% will be accessed, so the index is preferred, but that's not true; that's one way adding an index can slow a query. This may be the situation you're seeing, based on your description--if the large ranges are touching more of the table than the optimizer estimates, using an index can be a net slowdown.
To figure this out, the database collects statistics about each column in each table, to determine whether a particular WHERE condition is selective enough to use an index. The idea is that you need to have saved so many blocks by not reading the whole table that adding the index I/O on top of it is still a net win.
This computation can go wrong, such that you end up doing more I/O than had you just read the table directly, in a couple of cases. The cause of most of them show up if you run the query using EXPLAIN ANALYZE. If the "expected" values versus the "actual" numbers are very different, this can suggest the optimizer had bad statistics on the table. Another possibility is that the optimizer just made a mistake about how selective the query is--it thought it would only return a small number of rows, but it actually returns most of the table. Here, again, better statistics is the normal way to start working on that. If you're on PostgreSQL 8.3 or earlier, the amount of statistics collected is very low by default.
Some workloads end up adjusting the random_page_cost tunable as well, which controls where this index vs. table scan trade-off happens at. That's only something to consider after the stats information is checked though. See Tuning Your PostgreSQL Server for an intro to several things you can adjust here.
I'd try several things:
increase DB cache parameters
add the index on that date field
redesign/modify the application to work with smaller ranges (althogh this suggestion might seem obvious, it is usually first to be thrown away)
The creation of an index for this date field improved the performance of the queries that read an small range of dates, but in big range of dates the performance decreased...
Try clustering your table using that index. The performance decrease might be due to the entire table getting opened on large ranges. And if so, clustering the table along that index would lead to less disk seeks.
Two suggestions:
1) Investigate the use of table inheritance for time-series data. For example, create a child table per month and then INDEX the date on each table. PostgreSQL is smart enough to only perform index_scan's on the child tables that have the actual data in the date range. Once the child table is "sealed" because it is a new month, run CLUSTER on the table to sort the data by date.
2) Look at creating a bunch of INDEX's that use WHERE clauses.
Suggestion #1 is going to be the winner long term but will take some work to setup (but will scale/run forever), but suggestion #2 may be a quick interim fix if you have a limited date range that you care about scanning. Remember, you can only use IMMUTABLE functions in your INDEX's WHERE clause.
CREATE INDEX tbl_date_2011_05_idx ON tbl(date) WHERE date >= '2011-05-01' AND date <= '2011-06-01';

Aggregates on large databases: best platform?

I have a postgres database with several million rows, which drives a web app. The data is static: users don't write to it.
I would like to be able to offer users query-able aggregates (e.g. the sum of all rows with a certain foreign key value), but the size of the database now means it takes 10-15 minutes to calculate such aggregates.
Should I:
start pre-calculating aggregates in the database (since the data is static)
move away from postgres and use something else?
The only problem with 1. is that I don't necessarily know which aggregates users will want, and it will obviously increase the size of the database even further.
If there was a better solution than postgres for such problems, then I'd be very grateful for any suggestions.
You are trying to solve an OLAP (On-Line Analytical Process) data base structure problem with an OLTP (On-Line Transactional Process) database structure.
You should build another set of tables that store just the aggregates and update these tables in the middle of the night. That way your customers can query the aggregate set of tables and it won't interfere with the on-line transation proceessing system at all.
The only caveate is the aggregate data will always be one day behind.
Yes
Possibly. Presumably there are a whole heap of things you would need to consider before changing your RDBMS. If you moved to SQL Server, you would use Indexed views to accomplish this: Improving Performance with SQL Server 2008 Indexed Views
If you store the aggregates in an intermediate Object (something like MyAggragatedResult), you could consider a caching proxy:
class ResultsProxy {
calculateResult(param1, param2) {
.. retrieve from cache
.. if not found, calculate and store in cache
}
}
There are quite a few caching frameworks for java, and most like for other languages/environments such as .Net as well. These solution can take care of invalidation (how long should a result be stored in memory), and memory-management (remove old cache items when reaching memory limit, etc.).
If you have a set of commonly-queried aggregates, it might be best to create an aggregate table that is maintained by triggers (or an observer pattern tied to your OR/M).
Example: say you're writing an accounting system. You keep all the debits and credits in a General Ledger table (GL). Such a table can quickly accumulate tens of millions of rows in a busy organization. To find the balance of a particular account on the balance sheet as of a given day, you would normally have to calculate the sum of all debits and credits to that account up to that date, a calculation that could take several seconds even with a properly indexed table. Calculating all figures of a balance sheet could take minutes.
Instead, you could define an account_balance table. For each account and dates or date ranges of interest (usually each month's end), you maintain a balance figure by using a trigger on the GL table to update balances by adding each delta individually to all applicable balances. This spreads the cost of aggregating these figures over each individual persistence to the database, which will likely reduce it to a negligible performance hit when saving, and will decrease the cost of getting the data from a massive linear operation to a near-constant one.
For that data volume you shouldn't have to move off Postgres.
I'd look to tuning first - 10-15 minutes seems pretty excessive for 'a few million rows'. This ought to be just a few seconds. Note that the out-of-the box config settings for Postgres don't (or at least didn't) allocate much disk buffer memory. You might look at that also.
More complex solutions involve implementing some sort of data mart or an OLAP front-end such as Mondrian over the database. The latter does pre-calculate aggregates and caches them.
If you have a set of common aggregates you can calculate it before hand (like, well, once a week) in a separate table and/or columns and users get it fast.
But I'd seeking the tuning way too - revise your indexing strategy. As your database is read only, you don't need to worry about index updating overhead.
Revise your database configuration, maybe you can squeeze some performance of it - normally default configurations are targeted to easy the life of first-time users and become short-sighted fastly with large databases.
Maybe even some denormalization can speed up things after you revised your indexing and database configuration - and falls in the situation that you need even more performance, but try it as a last resort.
Oracle supports a concept called Query Rewrite. The idea is this:
When you want a lookup (WHERE ID = val) to go faster, you add an index. You don't have to tell the optimizer to use the index - it just does. You don't have to change the query to read FROM the index... you hit the same table as you always did but now instead of reading every block in the table, it reads a few index blocks and knows where to go in the table.
Imagine if you could add something like that for aggregation. Something that the optimizer would just 'use' without being told to change. Let's say you have a table called DAILY_SALES for the last ten years. Some sales managers want monthly sales, some want quarterly, some want yearly.
You could maintain a bunch of extra tables that hold those aggregations and then you'd tell the users to change their query to use a different table. In Oracle, you'd build those as materialized views. You do no work except defining the MV and an MV Log on the source table. Then if a user queries DAILY_SALES for a sum by month, ORACLE will change your query to use an appropriate level of aggregation. The key is WITHOUT changing the query at all.
Maybe other DB's support that... but this is clearly what you are looking for.

Appropriate query and indexes for a logging table in SQL

Assume a table named 'log', there are huge records in it.
The application usually retrieves data by simple SQL:
SELECT *
FROM log
WHERE logLevel=2 AND (creationData BETWEEN ? AND ?)
logLevel and creationData have indexes, but the number of records makes it take longer to retrieve data.
How do we fix this?
Look at your execution plan / "EXPLAIN PLAN" result - if you are retrieving large amounts of data then there is very little that you can do to improve performance - you could try changing your SELECT statement to only include columns you are interested in, however it won't change the number of logical reads that you are doing and so I suspect it will only have a neglible effect on performance.
If you are only retrieving small numbers of records then an index of LogLevel and an index on CreationDate should do the trick.
UPDATE: SQL server is mostly geared around querying small subsets of massive databases (e.g. returning a single customer record out of a database of millions). Its not really geared up for returning truly large data sets. If the amount of data that you are returning is genuinely large then there is only a certain amount that you will be able to do and so I'd have to ask:
What is it that you are actually trying to achieve?
If you are displaying log messages to a user, then they are only going to be interested in a small subset at a time, and so you might also want to look into efficient methods of paging SQL data - if you are only returning even say 500 or so records at a time it should still be very fast.
If you are trying to do some sort of statistical analysis then you might want to replicate your data into a data store more suited to statistical analysis. (Not sure what however, that isn't my area of expertise)
1: Never use Select *
2: make sure your indexes are correct, and your statistics are up-to-date
3: (Optional) If you find you're not looking at log data past a certain time (in my experience, if it happened more than a week ago, I'm probably not going to need the log for it) set up a job to archive that to some back-up, and then remove unused records. That will keep the table size down reducing the amount of time it takes search the table.
Depending on what kinda of SQL database you're using, you might look into Horizaontal Partitioning. Oftentimes, this can be done entirely on the database side of things so you won't need to change your code.
Do you need all columns? First step should be to select only those you actually need to retrieve.
Another aspect is what you do with the data after it arrives to your application (populate a data set/read it sequentially/?).
There can be some potential for improvement on the side of the processing application.
You should answer yourself these questions:
Do you need to hold all the returned data in memory at once? How much memory do you allocate per row on the retrieving side? How much memory do you need at once? Can you reuse some memory?
A couple of things
do you need all the columns, people usually do SELECT * because they are too lazy to list 5 columns of the 15 that the table has.
Get more RAM, themore RAM you have the more data can live in cache which is 1000 times faster than reading from disk
For me there are two things that you can do,
Partition the table horizontally based on the date column
Use the concept of pre-aggregation.
Pre-aggregation:
In preagg you would have a "logs" table, "logs_temp" table, a "logs_summary" table and a "logs_archive" table. The structure of logs and logs_temp table is identical. The flow of application would be in this way, all logs are logged in the logs table, then every hour a cron job runs that does the following things:
a. Copy the data from the logs table to "logs_temp" table and empty the logs table. This can be done using the Shadow Table trick.
b. Aggregate the logs for that particular hour from the logs_temp table
c. Save the aggregated results in the summary table
d. Copy the records from the logs_temp table to the logs_archive table and then empty the logs_temp table.
This way results are pre-aggregated in the summary table.
Whenever you wish to select the result, you would select it from the summary table.
This way the selects are very fast, because the number of records are far less as the data has been pre-aggregated per hour. You could even increase the threshold from an hour to a day. It all depends on your needs.
Now the inserts would be fast too, because the amount of data is not much in the logs table as it holds the data only for the last hour, so index regeneration on inserts would take very less time as compared to very large data-set hence making the inserts fast.
You can read more about Shadow Table trick here
I employed the pre-aggregation method in a news website built on wordpress. I had to develop a plugin for the news website that would show recently popular (popular during the last 3 days) news items, and there are like 100K hits per day, and this pre-aggregation thing has really helped us a lot. The query time came down from more than 2 secs to under a second. I intend on making the plugin publically available soon.
As per other answers, do not use 'select *' unless you really need all the fields.
logLevel and creationData have indexes
You need a single index with both values, what order you put them in will affect performance, but assuming you have a small number of possible loglevel values (and the data is not skewed) you'll get better performance putting creationData first.
Note that optimally an index will reduce the cost of a query to log(N) i.e. it will still get slower as the number of records increases.
C.
I really hope that by creationData you mean creationDate.
First of all, it is not enough to have indexes on logLevel and creationData. If you have 2 separate indexes, Oracle will only be able to use 1.
What you need is a single index on both fields:
CREATE INDEX i_log_1 ON log (creationData, logLevel);
Note that I put creationData first. This way, if you only put that field in the WHERE clause, it will still be able to use the index. (Filtering on just date seems more likely scenario that on just log level).
Then, make sure the table is populated with data (as much data as you will use in production) and refresh the statistics on the table.
If the table is large (at least few hundred thousand rows), use the following code to refresh the statistics:
DECLARE
l_ownname VARCHAR2(255) := 'owner'; -- Owner (schema) of table to analyze
l_tabname VARCHAR2(255) := 'log'; -- Table to analyze
l_estimate_percent NUMBER(3) := 5; -- Percentage of rows to estimate (NULL means compute)
BEGIN
dbms_stats.gather_table_stats (
ownname => l_ownname ,
tabname => l_tabname,
estimate_percent => l_estimate_percent,
method_opt => 'FOR ALL INDEXED COLUMNS',
cascade => TRUE
);
END;
Otherwise, if the table is small, use
ANALYZE TABLE log COMPUTE STATISTICS FOR ALL INDEXED COLUMNS;
Additionally, if the table grows large, you shoud consider to partition it by range on creationDate column. See these links for the details:
Oracle Documentation: Range Partitioning
OraFAQ: Range partitions
How to Create and Manage Partition Tables in Oracle